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y Aix-Marseille Université, IRD, AP-HM, IHU Méditerranée Infection, France 
z University of Maryland School of Medicine, Institute for Genome Sciences, USA 
aa Robert Koch Institute Berlin, Germany 
ab Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan 
ac Millennium Initiative for Collaborative Research on Bacterial Resistance, Germany 
ad High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), Eberhard Karls University of Tübingen, Wächterstraße 76, 72074, Tübingen, 
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A B S T R A C T   

In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support 
human health and city life. However, the knowledge about the species composition and functions involved in 
urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies 
comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 
samples collected from various common surface with the matching materials in the mass transit system across 60 
cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the 
city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of 
the new gene catalog showed that the functional terms have a significant geographical distinguishability. 
Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co- 
occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide 
us more information for the synthesis pathways of natural products. Expanded the known urban microbiome 
diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban 
microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the 
microbial interaction analysis between human and urban environment.   

1. Introduction 

With the rapidly urbanizing world, more than half of the world’s 
population live in urban areas and the urban microbes have had an 
increasingly effect on human health. For example, certain urban mi-
crobes have been implicated as the potential to increase or disrupt 
immunoregulation and/or exaggerate or suppress inflammation. Despite 
several important discoveries about taxonomic diversity in cities(Rinke 
et al., 2013), a large amount (~50%) of species in the urban environ-
ment are still unknown. Hence, uncovering these unknown species is 
essential to deeply parsing of microbial interaction between human and 
urban environment. 

With the accelerated reduction in sequencing costs, many previously 
unknown species’ genomes are being reconstructed. Recently, the Met-
aSUB Consortium was established to extend our knowledge of urban 
microbiomes by studying mass transit systems within multiple cities 
worldwide. Metagenome samples (n = 4728) were collected during 
2015–2017 from 60 cities around the world (Danko et al., 2021). As 
expected from prior work, about 50% of the quality-checked reads in the 
urban samples still could not be mapped to known reference genomes 
(Danko et al., 2021), demonstrating the magnitude of unidentified 
species existing in the urban environment. To uncover these species and 
reveal their likely functional capabilities, metagenomic binning can be 
implemented to obtain genomes directly from environmental samples 
without prior isolation (Rinke et al., 2013; Alneberg et al., 2014; Wei 
et al., 2019; Cao, 2020). Metagenomic reads are assembled into contigs, 
and subsequently clustered into metagenome assembled genomes 
(MAGs) on the basis of sequence composition, depth of coverage, and 
taxonomic affiliations (Albertsen, 2013; Kang et al., 2019). Considering 
the advantage of recovering unknown genomes, a growing number of 
related studies have been launched to reconstruct numerous MAGs, 
mainly associated with the gut microbiome (Parks et al., 2018a; Nayfach 
et al., 2016, Nayfach et al., 2019; Pasolli, 2019bib_Nayfach_et_al_2016; 
Almeida, 2019). These studies have recovered thousands of previously 
unknown genomes which provided significant phylogenetic expansions 
of the tree of life (Parks et al., 2018a; Tyson, 2004; Brown et al., 2015), 
and spurred the development of methods for assessing the quality of 
recovered MAGs with regards to their estimated completeness, 
contamination and strain heterogeneity (Parks et al., 2015; Eren et al., 

2015, Eren et al., 2021Eren et al., 2015). 
Here, we uncovered 732 novel bacterial species by reconstructing 

5980 MAGs using the metagenome data provided by the MetaSUB 
Consortium. We investigated the association between those novel spe-
cies and specific geographical backgrounds, as well as their putative 
functional capacities. The bacterial genomes uncovered here substan-
tially increased our knowledge of urban microbiome species diversity 
and will facilitate a better understanding of urban microbial 
biodiversity. 

2. Materials and methods 

2.1. Metagenomic assembly and contigs binning 

The samples were collected following the Danko et al.’s protocol 
(Danko et al., 2021). Briefly, samples were collected from various 
common surfaces (e.g. seat, handrail, ticket machine, palm and floor) 
with matching materials in the mass transit systems of 60 cities world-
wide. The metadata such as time, geolocation, and scanning barcodes 
were also recorded. To optimally preserve the DNA, the flocked swabs 
used for sample collection were preserved with a storage tube contain-
ing a buffer. The samples were stored at − 80 ◦C before DNA extraction. 
DNA was prepared for Illumina sequencing using the QIAGEN Gene 
Reader DNA Library Prep Kit I (cat. no. 180435). AdapterRemoval 
(Schubert et al., 2016) (version 2.17) were used to trim adaptor se-
quences and to remove low quality reads with default parameters. 
Preprocessed sequences were aligned to human genome (hg38) using 
Bowtie2 (Langmead and Salzberg, 2012) (version 2.3.5). Read pairs 
with both ends mapped to the human genome were regarded as human 
reads and read pairs with only one mate mapped were discarded. Read 
pairs with neither mate mapped to human genome were regarded as 
non-human reads and used for downstream analysis. 

The non-human reads were then assembled with metaSPAdes (Nurk 
et al., 2017) (version 3.10.1). Only contigs longer than 1000 nucleotides 
(nts) were considered for further processing. This resulted in 1.96e7 
different contigs for a total length of 5.61e10 nt. Thereafter, these 
contigs were binned through MetaBAT2 (Kang et al., 2015) (version 
2.12.1). Depth of coverage required for the binning was inferred by 
mapping the raw reads back to the corresponding contigs with Bowtie2 
(Langmead and Salzberg, 2012) (version 2.3.5) with the option ‘–local 
–very-sensitive-local’. Completeness, contamination and strain hetero-
geneity were estimated with CheckM (Parks et al., 2015) (version 
1.0.13) using the lineage_wf workflow. The QS (quality score) of each 1 Listed alphabetically.  

2 Equal contribution. 
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MAG was calculated as: completeness - 5 × contamination. Using the 
measurement of QS, only 6107 MAGs survived with QS ≥ 50. On the 
basis of these metrics, the MAGs were classified into high-quality, 
medium-quality and low-quality MAGs (High quality: completeness 
>90%, contamination <5% and strain heterogeneity <0.5%; Medium 
quality: completeness >50% and contamination <5%; Low quality: 
Others). The GUNC was also applied as an additional check for chime-
rism (Orakov, 2021). 

The NCBI GenBank database (Sayers, 2019) and the Integrated Gut 
Genomes (IGG) dataset (Nayfach et al., 2019) and The Genomes from 
Earth’s Microbiomes (GEM) database (Nayfach, 2021) were used to 
assign all MAGs. From the GenBank database deposited as of July 2020, 
we obtained all the complete bacterial and archaea genomes (Bacterial: 
19,282, Archaea: 389). The IGG database (release date: May 30, 2020) 
contains 23,790 representative genomes for all species. The GEM data-
base (release date: November 30, 2020) composes of 52,515 MAGs from 
over 10,000 metagenomes collected from diverse microbiomes. The 
MinHash sketch of the reference genomes were created using Mash 
(Ondov, 2016) (version 2.1.1) with default parameters. Then, the Mash 
distance between each MAG and reference genomes was calculated. At 
last, the dnadiff (version 1.3) from MUMmer (Kurtz, 2004) (version 
4.0.0) was further used to compare each MAG and its closest reference 
genome. MAGs with the fraction of the MAG aligned (aligned query, AQ) 
no less than 60% and whole-genome average nucleotide identity (ANI) 
less than 95% were regarded as assigned. 

2.2. Species-level de-replication of MAGs 

To explore the novel genomes, we de-replicated the MAGs using an 
approach similar to a previously published method (Nayfach et al., 
2019; Almeida, 2019). Briefly, we first calculated the Mash distance 
between each pair of MAGs through creating a MinHash sketch for each 
MAG to perform an all-against-all comparison. Then a single-linkage 
clustering was built from the Mash distance and the primary clusters 
were identified on the basis of a Mash ANI of 0.9. The Mash ANI is short 
of accuracy for the incomplete genomes (Olm et al., 2017), but the 
extremely high computation efficiency makes it highly suitable for the 
primary clustering. To improve the accuracy, we performed a secondary 
clustering in each primary cluster with the measurement of 
whole-genome-based ANI (gANI) calculated using dnadiff. Genomes 
were clustered into OTUs using average-linkage hierarchical clustering 
with a gANI cut-off of 0.95 using the R (version 3.6.1) package den-
dextend (Galili, 2015) (version 1.12.0). 

2.3. Phylogenetic and taxonomic analysis 

Taxonomic annotation of each OTU was performed with GTDB-TK 
(Chaumeil et al., 2019) (version 0.3.2, Genome Taxonomy Database 
version 89) using the ‘classify_wf’ function with default parameters. 
Based on the multiple sequence alignment results generated by 
GTDB-Tk, the OTU-only bacterial phylogeny was built with FastTree2 
(Price et al., 2010) (version 2.1.10) and visualized using Graphlan 
(Asnicar et al., 2015) (version 1.1.3). As the phylogenetic analysis 
method mentioned previously (Almeida, 2019), the phylogenetic di-
versity was quantified by the sum of branch lengths using phytools R 
package (Revell, 2012). 

2.4. OTUs abundance and prevalence estimation 

The relative abundance of each MAG was calculated from the 
alignments of the non-human reads against the assemblies of the same 
sample. The relative abundance in each sample was defined as the 
number of reads aligned to the contigs of the MAG normalized by the 
total number of reads in the sample. The relative abundance of an OTU 
in a sample was calculated as the sum of the relative abundance of MAGs 
in the sample belonging to the OTU. The prevalence of OTUs was 

determined by assessing the level of genome coverage, mean and depth 
evenness as the approach mentioned in a previous study (Almeida, 
2019), which takes both the depth and coverage into account. 

2.5. Protein sharing network-based OTU annotation 

The proteins for each OTU were predicted using prodigal (version 
2.6.3) (Hyatt et al., 2010) with the option “-c”. Protein clusters were 
generated as the previous method (Bin Jang, 2019). Briefly, 
all-versus-all comparison was performed using Diamond with option “-e 
1e-5 –sensitive”. Then the protein clusters were generated by using 
Markov cluster algorithm (Enright et al., 2002). After the clustering, we 
applied the Jaccard coefficient (Real and Vargas, 1996) to measure the 
similarities between any two OTUs. As the MCL-based method cannot 
handle overlaps, the Jaccard coefficient matrix was further transformed 
into the topological overlap matrix using the R package WGCNA (Zhang 
and Horvath, 2005), which was first proposed for constructing gene 
co-expression networks. 

2.6. Functional analysis for the OTUs 

Functional analysis was performed using eggNOG-mapper v1.0.3 38 

based on the eggNOG database (Huerta-Cepas et al., 2019) (v.5.0) with 
options “-d bact -m diamond -override –usemem –seed_ortholog_evalue 
1e-5”. Brite Hierarchy form KEGG was used to screen metabolic related 
pathways and KEGG orthology (KO) among all the KOs annotated by 
eggNOG. The microbial BGCs were inferred with antiSMASH (version 
4.5) (Blin et al., 2019) and the number of BGCs that matched the MIBiG 
repository (Kautsar et al., 2020) was determined with the option 
“–knowclusterblast”. The co-occurrence relationship between the BGCs 
and genera was measured using Jaccard coefficient. The significance 
was calculated with hypergeometric test and adjusted using the Benja-
mini and Hochberg method (Benjamini and Hochberg, 1995). 
BGC-genus pairs with adjusted p-value less than 0.01 were regarded as 
significantly co-occurred. The co-occurrence network was visualized 
using Cytoscape (Shannon, 2003) (version 3.7.2). 

3. Results 

3.1. Recovering genomes from the urban microbiome 

There were 4728 samples collected from various common surfaces 
with matching materials in the mass transit systems, such as benches 
(both metal and wood), subway floors, kiosks, and wall tiles of 60 cities 
worldwide (Fig. 1A, Supplementary Figs. S1A and B). To recover ge-
nomes, the reads were first assembled into contigs after quality control 
and contigs with length >1000 nt were used to generated 14,080 bins 
(see Methods section for details). Following the criterion defined by the 
minimum information about a metagenome-assembled genome, we 
obtained 1448 high quality MAGs (more than 90% completeness, less 
than 5% contamination and strain heterogeneity <0.5%) and 4532 
medium quality MAGs (more than 50% completeness and less than 10% 
contamination) (see the Methods section for details, Fig. 1. B). In the 
following analyses, we focused on the 5980 MAGs that met or exceeded 
the medium quality. Finally, 1791 samples from 45 cities with at least 
one MAG were left for further analysis. 

To explore how many of these MAGs belong to the annotated species, 
we matched them against all complete bacterial and archaeal genomes 
(bacterial: 19,282 and archaea: 389) available as of July 2020 from the 
NCBI GenBank database (Sayers, 2019). According to the previously 
reported genome threshold for species delineation (Jain et al., 2018; 
Varghese, 2015), which is at least 95% average nucleotide identity (ANI) 
over at least 60% of the genome, 2560 MAGs were properly matched to 
the bacterial kingdom. To extend the reference genome assignment, we 
also compared the MAGs with the public 52,515 MAGs obtained from 
GEM database (Nayfach, 2021), 4644 species representatives in Unified 
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Human Gastrointestinal Genome (UHGG) collection (Almeida, 2021) 
and 23,790 representative genomes for all species in the IGG dataset 
(Nayfach et al., 2019). Combining the alignment results with the NCBI 
GenBank, GEM, UHGG and IGG databases, there were still more than 
one-third of the MAGs novel relative to currently known genomes 
(Fig. 1C). To explore the association between the number of unmatched 
MAGs and geographic location, we compared the number of unmatched 
MAGs across different continents. We summarized the MAG numbers 
recovered in each sample, and samples with less than 5 MAGs identified 
were excluded from the comparison. The results showed that East Asia 
and Oceania sets have a larger proportion of unmatched MAGs whereas 
the European set possesses the smallest proportion of unmatched MAGs 
(Fig. 1D), indicating that these unmatched MAGs may be regional spe-
cific, and thus deeper investigation of these unmatched MAGs should be 
carried out. 

3.2. Taxonomic classification and geographical distribution 

Given that we identified a large number of unmatched MAGs in our 
datasets, we aimed to further determine their taxonomic classification to 
explore whether these MAGs represent novel taxa following definition of 
species-level OTU (Nayfach et al., 2016, 
2019bib_Nayfach_et_al_2019bib_Nayfach_et_al_2016). 

The 5980 MAGs were first de-replicated into estimated species-level 
OTUs using a two-step clustering strategy (see the Methods section for 
detail), yielding a total of 1304 species-level OTUs with a median quality 
score of 88.74 (interquartile range [IQR]: 72.59–95.57), completeness 

of 95.64% (IQR: 82.76%–98.79%) and contamination of 0.83% (IQR: 
0.14%–1.71%). These OTUs were then classified at species-level OTUs 
with GTDB-tk tools (Chaumeil et al., 2019; Parks et al., 2018b). The 
results showed that only 2 of the 1304 OTUs were classified as archaea 
(Halococcus and Halalkalicoccus at genus-level, respectively). The 
remaining 1302 OTUs were classified as Bacteria and were shown to be 
consistent with previous reports from urban and rural environments 
(Danko et al., 2021; Liu et al., 2018; Maron et al., 2005) with the 
dominant assigned bacterial phyla being Proteobacteria (37.56%), Acti-
nobacteria (27.80%), Firmicutes (22.04%) and Bacteroidetes (9.68%) 
(Supplementary Fig. S1C). For the following analysis, we only focused 
on these 1302 bacterial OTUs. 

We noticed that more than half of these OTUs (56.07%) could not be 
classified at the species level and 6% and 0.1% could not be properly 
annotated at known genus and family levels respectively (Fig. 2A). 
Phylogenetic analysis revealed that these novel OTUs could expand the 
known diversity by 67% on the basis of total branch lengths (Faith, 
1992), with the largest increase being within the Proteobacteria phylum 
(Fig. 2B). Several novel OTUs with high phylogenetic similarity were 
retrieved, belonging to Microbacterium, Pseudomonas and Chrys-
eobacterium. Among these novel OTUs, the top 5 families were most 
represented were Microbacteriaceae (9.43%), Sphingomonadaceae 
(5.74%), Xanthomonadaceae (5.33%), Pseudomonadaceae (4.37%) and 
Burkholderiaceae (3.96%). Considering the amount of novel OTUs, we 
counted the number of both the known and unknow OTUs reconstructed 
in each sample. The OTU number was normalized by the sequence 
depth. From the results we found that the New York samples can provide 

Fig. 1. Recovery of genomes from global urban microbiome and matching with the reference genomes. A: Geographical distribution of metagenomes. 
Number of samples were divided into four levels and colored, respectively. B: Quality score distribution of the MAGs that met or exceeded the medium quality. 
Completeness and contamination values estimated by CheckM are reported for medium- (n = 4532) and high-quality (n = 1448) MAGs. C: Number of the median- 
and high-quality MAGs matching NCBI GenBank, GEM, UHGG and IGG genomes alongside those that did not match any reference genome from either database. D: 
Fraction of MAGs that did not match any genomes from the NCBI Ref, GEM, UHGG and IGG database across different continents. Samples with total recovered MAG 
numbering less than 5 were excluded from the comparison. 
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the most reconstructed OTUs (both annotated and novel OTUs). 
Although the Offa samples didn’t provide too many reconstructed OTUs, 
but the proportion of novel OTUs in all constructed OTUs is the largest 
(Fig. 2C). 

To determine the prevalence and diversity of the OTUs across 
different cities and continents, we defined the relative abundance of an 
OTU in a sample as the sum of the relative abundance of all MAGs 
belonging to this OTU. The prevalence of an OTU was estimated by 
considering the level of genome coverage, mean read depth, and even-
ness, and normalized by MAGs/OTU (see methods). To explore the 
geographical difference of the OTUs appearance, we calculated the 
frequency of OTUs observed in each continent and ranked the OTUs by 
descending order of their frequency (continents with less than 20 OTUs 
were excluded from the comparison). The five most frequently observed 
OTUs were listed for each continent (Fig. 2. D), and the results showed 
that the five most frequent OTUs in each continent mainly belong to four 
classes: Actinobacteria, Alphaproteobacteria, Clostridia and Gammapro-
teobacteria. The most frequently observed OTU (OTU652) was classified 
as Cutibacterium acnes at the species level and appeared in more than 
40% of the samples. Cutibacterium acnes is naturally found in higher 
concentrations as skin flora on the chest and back, as well as in other 

areas with greater numbers of hair follicles (Matsen 3rdet al., 2013; 
Wilson, 2005). Beyond that, we found that the OTU848 and OTU708, 
classified as Clostridium sulfidigenes and Hungatella celerecrescens at spe-
cies level, were specifically ranked at the top of the sub-Saharan African 
samples. In addition, two novel OTUs (OTU831 and OTU969) were 
ranked the highest in South America, North America and Europe, and 
were classified as Psychrobacter (OTU831) and Kocuria (OTU969) at the 
genus level. Interestingly, both two novel OTUs were almost undetect-
able in East Asia and Oceania (Fig. 2D). Bacteria belonging to the Psy-
chrobacter genus are generally isolated from humans and can cause 
human infection such as endocarditis and peritonitis (Winn, 2006). 
Kocuria is a genus of gram-positive bacteria and is frequently found as 
normal skin flora in humans and other mammals. Sporadic reports in the 
literature have dealt with infections by Kocuria species, mostly in 
compromised hosts with serious underlying conditions (Savini, 2010). 
To investigate the species diversity for each city based on these OTUs, 
we then calculated the Shannon’s diversity index (cities with less than 
20 samples were excluded). We observed that Fairbanks and New York 
City (North America), London (Europe), Offa and Ilorin (Sub-Saharan 
Africa) were the top five locations with higher species diversity 
(Fig. 2E). 

Fig. 2. Phylogeny based classification and geographical specific analysis. A: Maximum-likelihood phylogenetic tree of the 1302 recovered bacterial OTUs. The 
nodes and clades colored red are novel and the corresponding phylum is depicted in the first outer layer. The outermost seven layers represent the heatmap of relative 
abundance of OTUs in the seven continents. B: Level of increase in phylogenetic diversity provided by the novel OTUs, relative to the complete diversity per phylum 
(top) and represented as absolute total branch length (bottom). The number of classified and novel OTUs assigned to each phylum is depicted in brackets (Classified/ 
Novel). C, Comparison of number of OTUs, including both the annotated and novel OTUs, reconstructed from samples obtained from different cities. D: The top five 
most frequently observed OTUs in each continent. Only continents with more than 20 OTUs are shown. E: The Shannon’s diversity index was calculated to measure 
the species diversity for each city. Cities with less than 20 samples were excluded. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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The above results indicated the differences of OTUs prevalence or 
variance among different cities or continents. To further investigate the 
factors that potentially associated with these differences, we attempted 
to explore the variation of the number of identified OTUs with respect to 
various factors, including city population, population density, the type 
of surface material that had been sampled, and coastal proximity. Our 
results suggested that the number of novel OTUs positively correlated 
with the city population and population density, supporting the 

hypothesis that population is likely a factor in microbial community 
composition (Fig. 3A and B). We also found that samples obtained from 
skin (left/right palm) and glass contained a higher number and more 
novel OTUs than from other types of surfaces (Fig. 3C). In addition, more 
OTUs were identified in the samples obtained from coastal cities 
compared to the ones from inland cities, however there was no statis-
tically significant difference in terms of the number of novel OTUs 
identified (Fig. 3D). 

Fig. 3. Specificity analysis of novel OTUs and network-based taxonomy classification. A, Scatter plot of the city population versus the number of OTUs 
identified. R indicates the Pearson’s coefficient. B, Scatter plot of the city population density versus the number of OTUs identified. C, Both the number of total OTUs 
and novel OTUs identified from samples obtained from different surface materials. Materials with less than 50 samples were excluded. D, Number of total OTUs and 
novel OTUs identified from samples obtained from coastal cities or inland cities. The Wilcox’s test was used to measure the statistical significance. E, Heatmap depicts 
the Topology Overlap Matrix (TOM) among all OTUs in the analysis. The color of each cell indicates the similarity between OTUs. (blue for lower and red for higher 
similarity). The OTU dendrogram and module assignment are also shown along the top and colored by the phylogeny-based classification results at phylum, class and 
order levels respectively. F, Performance of the network-based classification method at genus level. Through increasing the threshold to cut the dendrogram, more 
OTUs can be classified along with an accuracy decrease, and 35% OTUs can be further classified with accuracy above 80%. Loess method was used to fit the model 
and the level of confidence interval was set as 0.95. G, 39% OTUs can be classified with 80% accuracy. The red dots represent the OTUs that are unclassified and blue 
dots represent the classified OTUs. H, Two novel OTUs at genus level can be further classified with 87.9% accuracy using the network-based method, and the 
previously unknown genus UBA1936 could also be classified as Sphingomonas. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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3.3. OTUs classification with protein sharing network 

More than half of the OTUs could not be classified by phylogeny- 
based methods since both genome-match-based and phylogeny-based 

classification methods heavily depend on the information of known 
reference genomes. To further examine the likely biology of these novel 
microorganisms, we classified the novel OTUs using a protein sharing 
network method run only the recovered OTUs’ information. The 

Fig. 4. Functional analyses for the uncovered OTUs. A: The heatmap depicts the observed frequency of KEGG function in each city. Blue represents lower and red 
higher frequency. KEGG functions absent in more than 90% samples for 90% cities are not shown. B: Dissimilarity among cities based on the COG function 
abundance. R2 is the partial R-squared. Cities with less than 20 samples were excluded. P-values are indicated as * (<0.05), ** (<0.01) or *** (<0.001). C: UMAP of 
KEGG function profiles of samples obtained from different cities. Axes are arbitrary and without meaningful scale. Cities with less than 20 samples were not shown. D: 
Number of BGCs found in all the OTUs subdivided by the BGC types. Only the fifteen most abundant categories are shown. E: BGCs enriched in the samples obtained 
from different cities. Cities with less than 20 samples were excluded. The q-value were calculated using hypergeometric test and Benjamini-Hochberg adjustment 
followed. F: Co-occurrence relationship between the BGCs and genera. The labeled nodes colored with yellow represent the BGCs and the nodes colored with other 
colors represented the genera. Genera nodes are colored according to the phylum annotation. The size of BGC nodes indicated the number of genera occurred 
together with the BGC. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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pipeline to build the protein sharing network leveraged previously 
proposed method (see Materials and methods) (Bin Jang, 2019). Based 
on the taxonomic classifications of the GTDB-tk tools, we found that 
TOM has a strong ability to group the OTUs at different taxonomic levels 
(Fig. 3E). 

To evaluate the annotation performance with TOM, we calculated 
the module purity as a proxy accuracy metric. By choosing different 
thresholds, we cut the dendrogram and extracted the modules using 
dynamicTreeCut (Langfelder et al., 2008), and the module purity for 
each taxonomic level and the number of OTUs contained in the modules 
were calculated along with the module coverage (Supplement Fig. S2). 
The results showed that the TOM approach could robustly classify the 
OTUs at phylum, class, order and family levels, and the accuracy 
reached above 74% at genus level. We also noticed that even though 
39% of the OTUs were unclassified at genus level with the 
phylogeny-based method, many could be further classified with an ac-
curacy above 80% with the protein sharing network-based method 
(Fig. 3F and G). For example, two OTUs that were unclassified at genus 
level with the phylogeny-based method can be classified with 87.9% 
accuracy using the network-based method (Fig. 3H), including two 
genera (Sphingomonas and UBA1936) in the module. UBA1936 is an-
notated as an unclassified Sphingomonadales in the NCBI Taxonomy 
database and could also be Sphingomonas based on their high similarity 
with known Sphingomonas in the same module. To verify the conjecture, 
we inspected all the OTUs that were classified as UBA1936 at genus level 
and their neighbor OTUs. We found that the closest OTUs of UBA1936 
were also classified as Sphingomonas at genus level. These results also 
indicated that the protein sharing network-based method can be a 
complimentary approach to the traditional taxonomy annotation 
methods. 

3.4. Association between the microbial community function and the 
geographic location 

To further uncover the functions of the 1302 species-level OTUs, we 
performed functional annotation for the genes predicted from these 
OTUs using eggNOG mapper (Huerta-Cepas, 2017, 2019). The results 
revealed that, 44% of predicted genes in most OTUs lack proper func-
tional annotations (Supplementary Fig. S3A). As expected, the anno-
tated OTUs harbor more annotated genes than novel OTUs 
(Supplementary Fig. S3B). To investigate the dispersion of the KO pat-
terns across different cities, we summarized the proportion of samples in 
which a specific KO presented for each city (Fig. 4A). The results showed 
that 584 KOs presented in at least 80% of samples for all cities. We also 
noted the distinct KO pattern in Offa samples. To further reveal these 
special pathways, we extracted the KOs which presented in more than 
80% Offa samples but presented in no more than one-third of samples 
collected from other cities. As a result, 268 genes (e.g. aacC, mecR1, and 
tetM) involved in 130 KOs, such as K0257 (methicillin resistance pro-
tein) and K18220 (ribosomal protection tetracycline resistance protein), 
were obtained (Supplementary Table S1). 

We also explored the geographical distinctiveness of functional 
profiles (e.g. COG and KEGG) with respect to these metagenomic sam-
ples, we first extracted the COG and KEGG annotations from the eggNOG 
result and measured the dissimilarity through performing permutational 
multivariate analysis using the “adomis2” function of R package Vegans 
(McArdle and Anderson, 2001) with Bray-Curtis distance. The results 
showed that, for most cities, the functional profile was significantly 
distinctive. In particular, the samples obtained from Offa (Nigeria) and 
Oslo (Norway) showed the largest dissimilarity (ANOSIM statistic R: 
0.75, p-value ≤ 0.001, Fig. 4B, Fig. S4A). Temperature between these 
two cities might be one of the factors which contributes to this signifi-
cant functional dissimilarity. The geographical distinctiveness of KEGG 
function abundance was also tested using permutational multivariate 
analysis, and similar results were observed (Supplement Figs. S4B and 
C). In contrast, we observed that the KEGG function profiles of the 

samples obtained from Europe and North America were almost insepa-
rable. However, a small group of samples obtained from Hong Kong 
showed significantly specific KEGG function profiles (Fig. 4C). 
Furthermore, we also estimated the dissimilarity of the samples obtained 
from different surface materials and the results showed that the skin 
samples retained the highest specificity for the KEGG function followed 
by the cement samples (Fig. S4D). 

Moreover, we surveyed the presence of BGCs within each OTU using 
antiSMASH v4.5 (Blin et al., 2019). We detected 4407 BGCs, of which 
about half encode for Terpenes, Nonribosomal peptides (NRPS), and 
Bacteriocins. In addition, less than 30% of the detected BGCs had a 
positive match in the Minimum Information about a Biosynthetic Gene 
(MIBiG) cluster database (Kautsar et al., 2020), which was similar to the 
percentage reported for the human gut samples (Almeida, 2019). Of 
note, the BGCs found in the novel OTUs are significantly more than those 
found in annotated OTUs (Fig. 4D), further proving the valuableness of 
the deeper mining of these novel species. The number of BGCs encoding 
for Terpene or Type III Polyketide synthase (PKS) detected in the novel 
OTUs was nearly twice as high as those in the annotated OTUs. Terpene 
synthases are widely distributed in bacteria and have been reported to 
carry potent antimicrobial activities (Yamada, 2015; Mahizan et al., 
2019). The type III PKS-derived polyketides have the potential to serve 
as a variety of purposes, such as pharmaceuticals, nutraceuticals, or 
plastic/fuel precursors (Palmer and Alper, 2019). To further reveal the 
geographical specific BGCs, we evaluated the enrichment of identified 
BGCs in different cities. The results showed that the Offa samples 
harbored the most specific BGCs including a series of antibiotic 
biosynthetic clusters (hybrid clusters), such as β-lactams-NRPS, thio-
peptide, and phenazine (Fig. 4E). Beta-lactams are the most widely used 
class of antibiotics that have specificity for bacteria, while thiopeptides 
belong to a growing class of sulfur-rich, highly modified heterocyclic 
peptide antibiotics. Phenazines are commonly considered to be antibi-
otics, but they can also participate in environmental redox reactions, 
especially with iron. These results also revealed the different biosyn-
thesis characteristics for different cities. 

We also investigated the association between the BGCs and genera, 
and found that the top five BGCs associated with the most genera 
occurring together are arylpolyene, terpene, thiopeptide, ectoine, and 
sactipeptide (Fig. 4F). The co-occurring genera for these top 5 BGCs are 
also shown (Fig. S5). For example, arylpolyene, which is a highly 
abundant class of bacterial natural products and functionally related to 
antioxidative carotenoids (Schoner, 2016), significantly co-occurred 
together with Brevundimonas, Pseudomonas, and Pantoea. The terpenes 
significantly associated with Pseudomonas, Corynebacterium, and Chrys-
eobacterium, and are significantly the largest class of natural products, 
with roles in mediating antagonistic and beneficial interactions among 
organisms (Gershenzon and Dudareva, 2007; Li and Yin, 2019). Based 
on these results, we also found that the genus Pseudomonas harbored the 
most co-occurring BGCs (37.9%) followed by Bacillus (29.3%) and 
smaller sets of other genera. 

4. Discussion 

With the rapid progress of urbanization, the urban environment is 
playing an increasing role in the human-microbe interactions. More and 
more studies have revealed that the environmental microbiome have a 
deep impact on human health. Previous studies have noted that about 
50% of high-quality (>Q30) reads in urban samples could not be map-
ped to known reference genomes (Danko et al., 2021). Although the 
absolute amount of the taxonomic novelty is limited (n = 732 new 
species), the new species and OTUs still provide new insights into the 
composition of urban microbiome and the relationship between the 
urban, environmental microbiome and human activities. 

Although we recovered thousands of MAGs, half of which are pre-
viously unknown, it is clear that the metagenome-based methods still 
suffer the limitation of low recovery rates for the recovery of less 
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abundant species. We also observed that the MAGs recovery rate in the 
urban environmental microbial samples data is much smaller as 
compared to human gut samples (average 3.8 bins per sample for urban 
environment vs. 20.6 bins per sample for human gut (Almeida, 2019)), 
probably due to the higher microbial diversity in the urban environment 
as compared to the human gut, reinforcing that a much higher 
sequencing depth (>50M reads/sample vs. ~10) would likely be needed 
for the urban environmental microbiome analysis. 

However, the number of novel species uncovered is significantly and 
positively correlated with the number of sequenced samples, indicating 
that an increased number of sample collections, as well as sequencing 
depth, could improve genome recovery. The larger number of novel 
OTUs observed in the cities with higher population density, as well as in 
skin samples (relative to the other surfaces and sample types) indicates 
that human activities may significantly influence the microbial com-
ponents, and that host-environment associations should examined in 
detail in environmental microbiome analysis. Despite the coastal cities 
tend to have bigger population and population density, we did observe 
significant difference between the coastal and inland cities in terms of 
the number of novel OTUS. It may attribute to other environmental 
factors (e.g. temperature, rainfall and humidity) and a deeper explora-
tion should be considered in the future. 

In addition, we also show that the protein function profile has a 
strong ability to group the OTUs at different taxonomic levels, giving 
support to the concept of “phylogenetic inertia” that suggests that more 
closely related species will be more functionally similar whereas 
distantly related species will be less functionally similar (Dreiss et al., 
2015). This result indicated that the function profile based taxonomic 
annotation method can be used as supplement to the traditional, 
phylogeny-based methods. Similar to the genus/species composition, 
the microbial function profile can also possess the geospatial stratifica-
tion. The BGC results revealed that the number of BGCs detected in the 
novel OTUs was nearly twice as high as in the annotated OTUs, often are 
coding for terpene, which has been reported to carry potent antimicro-
bial activity, indicating that many natural compounds with potential 
antimicrobial activity are yet to be identified in the urban environmental 
microbiome. The geographical specificity of BGCs suggested that envi-
ronmental microbes in different cities may possess their specific 
biosynthetic products. The co-occurrence between the BGCs and genera 
shown in this study can further guide the discovery of new and natural 
antimicrobials from environmental microbes. 

Therefore, a comprehensive collection of bacterial genomes may 
allow a detailed microbial ecosystem description, providing reliable 
genome recovery from MAGs, as well a deeper understanding of func-
tional associations. The novel bacterial species uncovered from urban 
environments can help guide improved city and biodiversity mapping, 
and serve as a metric that quantifies the changes of the microbiota in 
urban ecological systems. 

5. Conclusions 

In this study, we used a range of computational tools to recover 
thousands of species-level OTUs, using the first global urban meta-
genome data, and observed that half of these OTUs could not be clas-
sified at species level. We revealed the composition and functional 
dispersion of these novel OTUs, which were also associated with the 
population density, across different cities and countries. Moreover, we 
also retrieved the BGCs from these novel OTUs and the co-occurrence 
relationship between BGCs and genera was also analyzed. Considering 
the close relationship between the urban environment and public health, 
these uncovered novel OTUs can provide new insight into the hygienic 
environment monitoring. Our results help to fill the gap of unknown 
species with respect to the urban environmental microbiome and can 
provide more comprehensive information for investigating the unex-
plored biodiversity in other biomes. 
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