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A B S T R A C T   

Understanding adaptive genetic variation is key for predicting the evolutionary response of species and pop
ulations to climate change, decisively influencing management and conservation decisions. Landscape genomics 
provides a framework to disentangle the effects of local adaptation from those of geographic distance and de
mographic history, through genomic analysis and the modeling of genotype-environment relationships. This 
approach can inform how evolutionary forces shape the neutral and adaptive genetic structure, helping to 
identify those populations subject to a greater risk of maladaptation due to anthropogenic climate change, i.e., 
the “genetic offset”. Using restriction-site associated DNA sequencing (RAD-Seq) and more than 49,000 single 
nucleotide polymorphisms screened from 12 locations of Araucaria araucana in Chile, we assessed the genetic 
structure and predicted the genetic offset of this emblematic tree species under two future climate scenarios. 
Using generalized dissimilarity modeling (GDM) we found that the temperature annual range was the most 
important variable shaping the observed patterns of adaptive divergence. Our results show that populations 
living in the piedmont of the southern Andes Mountain range are at the greatest risk of maladaptation, while 
populations living in the high elevation zones in the Andes Mountain range are at the lowest risk. This study 
constitutes an important tool for forestry management and conservation of A. araucana forests.   

1. Introduction 

Anthropogenic climate change is expected to cause shifts in the 
distribution of species, populations declines and extinctions. Species can 
cope the threats that arise from new environmental conditions in current 
habitats either migrating, adapting in situ or through phenotypic plas
ticity (Sultan, 2000; Hoffmann and Sgrò, 2011; Gougherty et al., 2021). 
During adaptive responses, genetic variation increases, causing malad
aptation in the short-term, but higher adaptability in the long-term 
(Urban, 2015; Wiens, 2016; Derry et al., 2019). While maladaptation 
causes suboptimal population fitness, adaptation can usually restore 
populations to optimal fitness levels in the long-term. Nonetheless, the 
normal continuum from maladaptation to adaptation can be disrupted 
by rapid climate change, causing a breakdown in the genetic- 
environmental relationship faster than the species’ capability to 

migrate or adapt in situ, with a consequent loss of fitness (Jump and 
Penuelas, 2005; Aitken et al., 2008). The measure of the amount of 
adaptive genetic change between present and future climate conditions 
required to maintain species current genetic–environmental association 
has been coined as the species’ “genetic offset” index (Fitzpatrick and 
Keller, 2015). Among other applications, this risk index can improve 
conservation strategies by gathering spatially explicit genetic informa
tion that helps to build more resilient and better adapted populations 
(Fitzpatrick and Keller, 2015; Jia et al., 2020). For example, the genetic 
offset can guide assisted gene flow programs, supporting the use of seed 
lots composed by local and non-local––but pre-adapted––genotypes, 
thus increasing adaptive diversity and resilience (Aitken and Whitlock, 
2013; Aitken and Bemmels, 2016). The implementation of genetic offset 
indexes could represent a modern solution to support the local adapta
tion of natural populations under rapidly changing environments. 
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The first step to assessing genetic offset is to determine the strength 
and structure of adaptive genetic variation, i.e. the variation found be
tween the genomes of individuals due to natural selection (Schoville 
et al., 2012). Landscape elements that impose dispersal limitations (e.g., 
geographic distance, physical barriers, etc.) and modulate ecological 
processes (e.g., colonization) act concomitantly with natural selection to 
shape adaptive divergence (Hoban et al., 2016). Elucidate the singular 
and combined effects of each of these factors in adaptive divergence 
imposes an analytical challenge, since the influence of neutral and 
adaptive processes are usually confounded in natural populations 
(Ahrens et al., 2018). Landscape genomics ––a synthetic discipline that 
combines concepts and tools from population genetics, landscape ecol
ogy, geography and spatial statistics (Manel et al., 2003; Holderegger 
and Wagner, 2008)––provides an robust theoretical framework to face 
this challenge through the identification of loci putatively under selec
tion based on associations between genetic data and environmental 
variables hypothesized to drive selection, while controlling for neutral 
genetic structure (Rellstab et al., 2015). To gain insight into the pro
cesses that shape adaptive divergence, redundancy analysis (RDA) can 
aid in the quantification of the specific and combined effects of land
scape elements on adaptive divergence, partitioning genomic variation 
into components explained by geographic distance, ecological gradients, 
and their combinations (Capblancq and Forester, 2021). Thus, adaptive 
divergence can be modeled using this subset of adaptive loci as response 
matrix and landscape elements, mainly environment and geography, as 
predictors. These models, which we will call from now on “adaptive 
divergence models”, can be harnessed to evaluate genetic offset under 
future conditions by measuring the distance between current and future 
predictions (Fitzpatrick and Keller, 2015; Holliday et al., 2017). 

While studies dealing with genetic offset have initially been imple
mented for different species across several ecosystems (Fitzpatrick and 
Keller, 2015; Bay et al., 2018; Gugger et al., 2018; Jia et al., 2020), its 
implementation has not yet achieved a comprehensive use in several 
geographic areas that require immediate assistance for conservation. 
One case is the temperate forests of southern South America, charac
terized by their complex evolutionary and biogeographic history, sus
taining large ecosystems with high endemism, which are regarded of 

great biological conservation value (Sersic et al., 2011; Villagrán, 2018). 
While some interest has been placed on the use of genetic tools in con
servation studies of Patagonian tree species, (Premoli et al., 2000; 
Marchelli et al., 2010; Souto et al., 2015; Mattera et al., 2020), landscape 
genomics has not been widely used to identify adaptive loci and to 
model adaptive divergence, (Martín et al., 2014; Hasbún et al., 2016), 
leaving this useful tools and its applications (e.g. genetic offset predic
tion) unexplored for species growing in temperate forests of southern 
South America. Given its potential to usefully inform conservation and 
forest management programs, the prediction of climate change-related 
genetic offset could aid in defining empirical criteria for conservation 
of valuable and threatened local tree species. 

An emblematic and endangered tree species living in South America 
temperate forests is Araucaria araucana (Molina) K. Koch, commonly 
referred to as “Pewen” (indigenous name) or “Monkey Puzzle Tree” 
(English name) (Premoli et al., 2013), which is distributed in restricted 
and fragmented patches of Chile and Argentina. In Chile, this species 
occurs in both the Costa and Andes Mountain ranges (37.5◦ to 38.5◦ and 
37.5◦ to 39.7◦ south latitude, respectively). Recent studies in population 
genetics of A. araucana have described weak patterns of population 
structure, most likely as a result of bird-mediated seed dispersal and the 
human consumption of its starch-rich seeds (Martín et al., 2014; Tella 
et al., 2016). Currently, this species is being increasingly affected by a 
dieback called “Araucaria leaf damage” (Velez et al., 2018; Puchi et al., 
2021). Provided that we are dealing with an iconic species, this dieback 
has prompted public and private conservation efforts, which have 
included assisted migration. However, there is a dearth of knowledge 
regarding the genetic-environmental relationship, which could scien
tifically inform conservation programs, reducing the risk of maladap
tation in novel and changing environments. 

With the purpose to provide empirical information for conservation 
and forest management programs, the main goal of this study was to 
predict the genetic offset of populations of A. Araucana due to climate 
change. Besides, two complementary objectives were addressed: (a) to 
assess Araucaria araucana’s population genetic structure, and (b) to 
evaluate the effect of ancestry, environment and geographic distance on 
whole and adaptive genetic variation. 

Fig. 1. Sampling locations map of A. araucana. Panel A): regional map. The red box indicates sampling area. Panel B): detailed map. Red dots show sampling lo
cations and its code. 
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2. Materials and methods 

2.1. Sampling, RAD-Seq library preparation and sequencing 

Tissue samples of A. araucana were collected from 12 different lo
cations in both the Coastal and Andes Mountain Ranges in Chile (Fig. 1, 
Table 1), to cover the range of environmental variation of its habitat. For 
each location, we traversed a 2 km transect where sampled trees were 
separated by at least 100 m. Eleven to 20 trees were sampled per tran
sect; we selected fresh, healthy-looking leaves from the tips of the 
branches. Trees 3 to 5 meters height were selected to study trees of 
roughly the same age group. Samples were maintained in sterile conical 
tubes stored in coolers with ice packs until arriving to the laboratory, 
where they were stored at − 80 ◦C until DNA extraction. Tissue samples 
were washed sequentially with 1.5 g/liter Captan (PubChem CID 8606), 
70% ethanol, 1% sodium hypochlorite, and sterile water to remove 
epiphytic microbes. Then, plant material was ground manually before 
being flash frozen for 1 min (with liquid nitrogen). After one cycle of 
tissue disruption in a TissueLyser II for 1 min at 30 hz, samples were 
frozen in liquid nitrogen again to repeat the disruption step. Fifty mil
ligrams of disrupted plant material were used for DNA extraction, using 
the DNeasy PowerPlant Pro kit (Qiagen). 

DNA was quantified in a Qubit 3.0 instrument (Thermo Fisher Sci
entific) using the Qubit double-stranded DNA (dsDNA) high-sensitivity 
(HS) assay kit. Genomic DNA from 190 individuals was extracted 
using a standardized protocol (Doyle, 1991). Libraries for RAD-Seq were 
prepared by digesting DNA with a PstI restriction enzyme. Sequencing 
was carried out by Floragenex Inc. (Portland, USA), using Illumina 
HiSeq2500 technology. Reads were filtered and processed with ipyrad 
v.0.9.58, a pipeline usually employed in phylogenetic and population 
genetic analyses given its handling of variable indels during the clus
tering process (Eaton and Overcast, 2020). 

The data were assembled de novo, following the ipyrad’s default 
parameters, which considered filters for readings with an average phred 
value lower than 33, barcode removal, and a clustering threshold of 
85%. The clusters obtained were selected with a ratio of 0.5 maximum 
heterozygosity per locus, 0.2 Single Nucleotide Polymorphism (SNP) per 
locus, two maximum alleles per site, and 8 indels per locus. The final 
consensuses were filtered to retain those present in at least 4 individuals 
per locus. Subsequently, the data set was additionally filtered with 
VCFtools software (Danecek et al., 2011). Sites with heterozygosity 
greater than 50%, minor allele frequency less than 5%, and missing data 
greater than 50%, were excluded. Individuals with more than 50% 
missing data were also discarded. After these filtering steps, a genotypic 
matrix of 134 individuals and 49,122 biallelic SNPs was obtained and 

later used for population structure analyses. In addition, a second matrix 
of 18,988 SNPs was obtained by taking only one SNP per fragment to 
conduct the detection of loci putatively under selection, in order to 
avoid some of the problems caused by linkage among markers (Hoban 
et al., 2016). Sequence data can be found in NCBI’s Sequence Read 
Archive database under BioProject PRJNA634877. 

2.2. Environmental predictors 

To detect environmental drivers of adaptive divergence, we consid
ered a comprehensive set of 25 edaphoclimatic predictors, which were 
later subjected to a variable selection procedure to build a set of few 
meaningful and uncorrelated variables. This initial dataset considered 
19 bioclimatic variables plus elevation from the WorldClim version 1.4 
database (Hijmans et al., 2005), representative of the average conditions 
for the years 1960–1990. In addition, five soil variables obtained from 
the Soilgrids 2.0 database (de Sousa et al., 2020) were considered. Then, 
we conducted a two-step variable reduction procedure (Fitzpatrick 
et al., 2011). 

First, we reduced the full set of variables by selecting ten bioclimatic 
and soil variables that minimized correlation (r < 0.7), retaining those 
variables of correlated pairs that were, in our opinion, the most bio
logically significant. These included: annual mean temperature (◦C), 
isothermality (%), precipitation of the wettest month (mm), precipita
tion of the driest month (mm), temperature annual range (◦C), precip
itation seasonality (%), elevation (m), cationic exchange capacity (CEC, 
mmol kg− 1), total soil nitrogen (cg kg− 1), and soil pH. This set, which 
includes annual trends, seasonality, limiting environmental factors and 
soil variables, was employed for the environmental association analysis 
to detect potentially adaptive loci, which are described below. 

Second, to fit the adaptive divergence model, we further reduced this 
set of ten variables by using a backward-elimination technique (Fitz
patrick et al., 2011), as implemented in the gdm.varImp function in the 
gdm R-package (Fitzpatrick et al., 2021). Briefly, this algorithm started 
removing less important variables, assessing the significance of each 
through permutation tests. This procedure continued until the difference 
in deviance between the model with and without the variable became 
significant and no more variables could be discarded without decreasing 
the model performance. After this step, temperature annual range (◦C), 
precipitation of the wettest month (mm), precipitation of the driest 
month (mm), elevation (m) and soil pH were retained. 

To project the bioclimatic variables used to fit the adaptive diver
gence model to future climate conditions, we considered four scenarios 
composed by two Representative Concentration Pathways (RCP4.5 and 
RCP8.5), reflecting moderate and extreme future conditions, respec
tively; and two projection periods (2050 and 2070). In order to account 
for uncertainty in climate projections (Sanderson et al., 2015), we chose 
two general circulation models (GCM) for each of the four scenarios: 
ACCESS1-0 (Bi et al., 2013) and HadGEM2-ES (Jones et al., 2011), from 
the fifth phase of the Coupled Model Intercomparison Project (CMIP5), 
which were ensemble using average. Future climate data were obtained 
from the Worldclim 1.4 (Hijmans et al., 2005). Lastly, the genetic offset 
was mapped using a mask corresponding to previous niche-based spe
cies distribution model reported for A. araucana (Alarcón and Cavieres, 
2015), covering an area of 28.576 km2. All raster data had a resolution 
of 30 arc-second. 

2.3. Building the adaptive divergence model 

The spatially explicit distance-based adaptive divergence model was 
fitted prior to a population structure analysis and detection of poten
tially adaptive loci, detailed below. 

2.3.1. Population structure 
To evaluate the population structure, the genetic ancestry co

efficients and the number of ancestral populations (K), the sNMF 

Table 1 
Sampling locations, geographic coordinates (degrees of south latitude and west 
longitude), sample size (N) and Mountain Range of the 12 A. araucana sampled 
sites.  

Map 
code ( 
Fig. 1) 

Site name Latitude Longitude N 
(Valid) 

Mountain 
range 

BP Bosque 
Pehuén 

− 39.46 − 71.72 12 Andes 

HL Hualalafquén − 39.33 − 71.41 7 Andes 
LM La Mula − 37.90 − 71.37 11 Andes 
LR Las Raíces − 38.43 − 71.45 14 Andes 
MC Malalcahuelo − 38.43 − 71.54 8 Andes 
MM Mamuil Malal − 39.58 − 71.48 10 Andes 
PC Conguillío − 38.70 − 71.81 9 Andes 
PN Parque 

Nahuelbuta 
− 37.81 − 73.02 14 Costa 

RA Ralco − 37.94 − 71.34 14 Andes 
TH Tolhuaca − 38.20 − 71.78 9 Andes 
TR Trongol − 37.69 − 73.12 11 Costa 
VA Villa 

Araucarias 
− 38.49 − 73.25 15 Costa  
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algorithm (scattered non-negative matrix factorization algorithm (Fri
chot et al., 2014)) was used as in the LEA R-package (Frichot and 
François, 2015). This approach provides estimates of ancestry co
efficients through least squares and incorporates a cross-entropy crite
rion to evaluate the model fit. K values from 1 to 5 were tested with 20 
repetitions, selecting the optimal K value as the one corresponding to the 
run showing the lowest cross entropy. 

2.3.2. Identification of potentially adaptive loci 
Potentially adaptive loci were identified following a consensus 

approach between two environmental association analysis methods 
(EAAs). The first one was a latent factor mixed model (LFMM), which 
identifies loci showing significant correlations with environmental 
gradients, while controlling for neutral population structure by inte
grating K as a random component (Frichot et al., 2013). This model was 
fitted using the lfmm_ridge function in the lfmm2 R-package (Caye et al., 
2019). As the number of latent factors, K, was considered as the optimal 
number of ancestral populations identified through sNMF. The second 
EAA was the redundancy analysis (RDA), a multivariate constrained 
ordination technique, frequently used in landscape genomic analyses 
(Hecht et al., 2015; Capblancq et al., 2018; Shryock et al., 2020). RDA is 
an extension of multiple regression modelling to multivariate response 
data (Legendre and Legendre, 2012), which has been shown to be more 
effective in detecting potentially adaptive loci than other techniques 
(Capblancq et al., 2018; Forester et al., 2018). To perform RDA, a 
biallelic genotypic matrix was used as the response matrix Y, and a set of 
environmental (climate and soil) variables was used as the predictor 
matrix X. After this constrained ordination step, we employed the 
methodology implemented in the pcadapt R-package to find outlier loci 
(Luu et al., 2017), based on the Mahalanobis distance. For both methods 
(LFMM and RDA), a false discovery rate of 5% was adopted. 

2.3.3. Fitting adaptive divergence model 
To model adaptive divergence, a generalized dissimilarity model 

(GDM) (Ferrier et al., 2007) was fitted at the individual level, using all of 
134 individuals described in Section 2.1. GDM is a non-linear distance- 
based approach that models genotype-environmental associations and 
adapts to a variable rate of change in allele frequencies along environ
mental gradients. For accomplishing this, we used the gdm R-package 
(Fitzpatrick et al., 2021), adopting 6 knots per spline for all predictors. 
As response variable, a distance matrix containing pairwise Jaccard’s 
dissimilarity index among individuals was used, which was obtained by 
applying the vegdist function of the vegan R-package (Oksanen et al., 
2020) on the biallelic matrix containing loci putatively under selection. 

As predictors, the set of environmental variables retained after the 
backward elimination process, in addition to the geographic distance, 
were used. Once the model was fitted, and in order to identify specific 
zones where genetic offset could be higher, we first created a continuous 
adaptive divergence map (Fig. S4) obtained according to Fitzpatrick and 
Keller (2015). Then, we grouped this continuous raster into six adaptive 
homogeneous zones by using the clara function of the cluster R-package 
(Maechler et al., 2021). These zones (Fig. 4) represent areas with similar 
adaptive allelic compositions and were used as spatial units of genetic 
offset quantification. 

2.4. Distance-based redundancy analysis 

For better understanding the structure of whole and adaptive 
genomic variation, we assessed the degree to which both are influenced 
by environmental variables, geographic distance and genetic ancestry. 
To achieve this goal, we performed a distance-based redundancy anal
ysis (db-RDA) (Legendre and Anderson, 1999) at the individual level 
using both the adaptive and the full set of SNPs. To do this, we use the 
function varpart function of the vegan R-package (Oksanen et al., 2020), 
which partitioned the variation of genomic dissimilarities in compo
nents explained by three explanatory tables (environment, ancestry and 
geography) and their combinations. To evaluate the significance of each 
partition, functions capscale and anova from vegan R package were 
applied running 999 permutations. For assessing the effect of geographic 
distance, we utilized a principal coordinates of neighborhood matrices 
(PCNMs), also known as Moran’s eigenvector maps (MEM). PCNMs are a 
set of orthonormal variables calculated through eigenvalue decompo
sition of a spatial weighting matrix based on geographic coordinates 
(Legendre and Legendre, 2012). PCNMs were calculated by using the 
pcnm function of the vegan R-package. The environmental matrix 
employed for db-RDA was the same as used for selective loci detection, 
which was scaled and centred. 

2.5. Genetic offset predictions 

We performed the genetic offset predictions by using the predict.gdm 
function of the gdm R-package (Fitzpatrick et al., 2021), which directly 
calculates the adaptive distance among two environmental raster stacks 
(present and future), and outputs a single raster layer containing genetic 
offset values. We assumed soil characteristics were invariable over time, 
so they had no influence on the genetic offset prediction. Given that two 
RCPs were evaluated in 2 different periods, the result was a set of four 
genetic offset maps. Each of these four rasters was overlaid onto the 

Fig. 2. Population memberships (K = 2) of the 134 individuals of A. Araucana, based on sNMF algorithm. Vertical bars represent the percentage of individual’s 
genome that belonged to each of the two ancestral groups (G1 and G2). Note that individuals from the VA location represent a distinctive class of admixture, showing 
a high presence of G1. Individuals from TR and PN constituted a second class of admixture, with a relatively balanced presence of G1 and G2, and the remaining 
individuals from Andes Mountain Range made up a third admixture class, with a low presence of G1. 
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Fig. 3. GDM I-splines for each environmental predictor and geographic distance. The maximum height of each curve indicates the total amount of change in allele 
frequencies associated with that predictor (variable importance). The shape of each curve indicates how the rate of change in allele frequencies varies along the 
predictor gradient. 
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adaptive raster zones described earlier, and a pixel-level data frame 
containing genetic offset, area in km2 and adaptive zone number was 
assembled for summarize the results. 

3. Results 

3.1. Adaptive divergence model 

3.1.1. Population structure 
The sNMF algorithm showed a minimum cross entropy value with 

the parameter K = 2, which was used as a surrogate for the number of 
ancestral populations in the subsequent analyses. The ancestry co
efficients revealed a clear differentiation between the populations in the 
Andes and the Costa Mountain Ranges (Fig. 2). Regarding ancestral 
admixtures, the Andes populations exhibited homogeneous levels of 
admixture, close to 20% of cluster G1 and 80% of cluster G2. In contrast, 
coastal populations showed heterogeneous levels of admixture. While 
individuals from locations PN and TR accounted for about 60% of cluster 
G1 and 40% of cluster G2, individuals from VA exhibited admixture 
levels about to 90% of cluster G1 and 10% of cluster G2. 

3.1.2. Potentially adaptive loci 
After EAAs modelling, the LFMM detected 1,113 loci as potentially 

adaptive. The predictor that returned the highest number of adaptive 
loci was temperature annual range, followed by soil pH and cationic 
exchange capacity. On the other hand, RDA returned 2,760 loci as 
potentially under selection. Observing the projection of each SNP in the 
RDA space, we were able to detect associations between adaptive SNPs 
and environmental predictors (Fig. S3). The RDA1 axis, which explained 
almost 50% of the variation, was strongly correlated with the temper
ature annual range, cationic exchange capacity and elevation, while the 

RDA 2 axis, which explained a minor amount of variation (9.7%), was 
mainly associated with the annual mean temperature and precipitation 
seasonality. Finally, 896 loci were detected as potentially adaptive by 
both methods. 

3.1.3. Adaptive divergence model (GDM) fit 
The GDM explained 85.1% of the variation in individual adaptive 

Fig. 4. Map showing six zones of similar adaptive allelic compositions for A. araucana, built with the K-means clustering algorithm applied to GDM transformed 
predictor’s data frame. These zones were used as genetic offset quantification units. 

Table 2 
Distance-based redundancy analysis (db-RDA). The amount of variance 
explained by each component or its combination is expressed as adjusted R2, in 
addition to its significance level. Note: F: Dependent matrix of individual ge
netic distances; the db-RDA tests are in the form of independent matrices F ~ | 
covariate matrices. env.: environment; geo.: geographic distance; anc.: ancestry. 
Total Explained: Adjusted R2 total of individual fractions. Abbreviation: ns: not 
significant. * p < .05; ** p < .01; *** p < .001.   

All SNPs Adaptive SNPs 

Combined Fractions Adj. R2 P(>F)  Adj. R2 P(>F)  

F ~ env.  0.12379  0.001 ***  0.50592  0.001 *** 
F ~ geo.  0.12396  0.001 ***  0.50247  0.001 *** 
F ~ anc.  0.09680  0.001 ***  0.43595  0.001 *** 
Individual Fractions       
F ~ env. | (geo. + anc.)  0.00735  0.001 ***  0.00838  0.001 *** 
F ~ geo. | (env. + anc.)  0.00853  0.001 ***  0.00953  0.002 ** 
F ~ anc. | (env. + geo.)  0.00062  0.137 ns  0.00000  0.466 ns 
F ~ env. + geo. | anc.  0.02129    0.06163   
F ~ geo. + anc. | env.  0.00103    0.00003   
F ~ env. + anc. | geo.  0.00203    0.00464   
F ~ env. + anc. + geo  0.09312    0.43128   
Total explained  0.13397    0.51549   
Total unexplained  0.86603    0.48451   
Total  1.00000    1.00000    
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genetic distance. The maximum height of each I-Spline (Fig. 3) indicates 
the total amount of change in allele frequencies associated with that 
predictor (variable importance). Temperature annual range proved to be 
the most important predictor, followed by geographic distance, precip
itation of the wettest month, precipitation of the driest month, elevation 
and soil pH. Regarding the shape of the I-Splines (Fig. 3), the temperature 
annual range exhibited a linear pattern between 19 and 23 ◦C, beyond 
which it showed a sharp decrease in slope, suggesting a plateau 
behaviour after this threshold. Geographic distance showed a different 
pattern: between 0 and 160 km. its importance was reported null, but 
over 160 km. its importance increased steadily. Adaptive zones map 
showed a differentiation among Andes and Costa Mountain ranges 
(Fig. 4). While almost the entirety of zone 3 is located in the Costa 
Mountain range and central valley, the remaining zones were located in 
the Andes Mountain Range, following a pattern of diagonal bands ori
ented from the northeast to the southwest. This suggests that environ
mental drivers that are adaptively significant have a wider range in the 
Andes Mountain range than the Costa Mountain range. 

3.2. Distance based redundancy analysis 

The results of the db-RDA, using both adaptive (896) and full set of 
SNPs (18,889), revealed a high degree of environmental adaptation 
(Table 2) in A. araucana, showing a great amount of total variance 
explained by adaptive SNPs (51.5%), regarding all SNPs (13.4%). Con
cerning the combined fractions in the full set of SNPs, environment and 
geography explained 12.4% of the total variance, while genetic ancestry 
explained only 9.7%. For the adaptive SNPs, environment and geogra
phy explained a much higher amount (50.6% and 50.2%, respectively), 
while the lowest value was returned by genetic ancestry (43.6%). 
Regarding individual fractions (i.e., the variation explained exclusively 
by a factor, excluding combined effects), the total amount of variance 
explained was low, with the greatest proportion being confounded 
among the three factors. As in the combined fractions, genetic ancestry 
explained the lowest amounts of variance in all SNPs, and in adaptive 
SNPs (0.06 and 0.00% respectively), while geographic distance 
explained the highest amounts, 0.85 and 0.95%, respectively. 

3.3. Genetic offset 

Predicted mean genetic offset was 0.56 for 2050 and 0.57 for 2070 
(Table 3). The RCP8.5–2070 scenario showed the highest genetic offset 
(0.58), while RCP4.5–2070 exhibited the lowest risk of maladaptation 
(0.55) (Fig. 5). Zone 5, corresponding to the piedmonts of the Andes and 
the southern border of the range of A. araucana (Fig. 6), showed it will 
be most affected by genetic offset in both 2050 and 2070 in RCP4.5 (0.66 
and 0.64, respectively), similar to RCP 8.5 (0.67 and 0.70, respectively). 
High elevation zones in the Andes Mountain range (Zone 1) appeared to 
be at the lowest risk (0.51 for both years and RCPs). Zone 3, containing 
mainly Coastal Mountain range populations, presented an intermediate 
risk level. It can also be observed that the Bío-Bío river basin is a zone of 
higher genetic offset than the surrounding areas (Fig. 6). 

4. Discussion 

This study confirms the presence of adaptive genetic variation in the 
genome of A. araucana, which was highly correlated with environmental 
variation. Based on our adaptive divergence model (GDM), we predicted 
that populations living in the piedmonts of southern Andean distribution 
will be most affected by maladaptation due to future climatic conditions 
and such populations should be prioritized for conservation. To the best 
of our knowledge, this is the first study dealing with genetic offset, not 
only for this emblematic species, but in the southern South American 
region, which may provide valuable information to ecological restora
tion, assist gene flow and assisted migration programs. 

4.1. Population structure 

Our population structure analysis revealed two ancestral clusters in 
sampled populations (K = 2), both depicting a disjoint distribution of 
genetic groups between Costa and Andes Mountains ranges (Fig. 2). This 
pattern is concurrent with biogeographic studies which propose an 
important role of glaciation cycles shaping current species distribution 
and genetic structure of Patagonian temperate forests. Long glacial pe
riods of areal expansion alternated with shorter periods of retraction and 
isolation during the interglacial warmer phases would have produced 
the present disjoint distribution of A. araucana populations (Villagrán, 
2018). According to pollen and charcoal records, colonization route 
could have been from glacial refuges located in the Costa Mountain 
range toward the Andes Mountain range (Sersic et al., 2011; Nanavati 
et al., 2020). 

4.2. Local adaptation 

We found a high degree of local adaptation in A. Araucana whose 

Table 3 
Genetic offset values for each adaptive zone, according to RCP and year of 
projection. Values correspond to area-weighted average of each of 6 adaptive 
zones overlaid onto 4 genetic offset raster (2 RCPs and 2 Years). Genetic offset 
values correspond to individual adaptive genomic distance computed as Jaccard 
index.    

Year 

RCP ZONE 2050 2070 

4.5 

1  0.51  0.51 
2  0.53  0.53 
3  0.61  0.55 
4  0.57  0.57 
5  0.66  0.64 
6  0.61  0.61 
SubTotal  0.56  0.55 

8.5 

1  0.51  0.51 
2  0.53  0.54 
3  0.60  0.65 
4  0.59  0.61 
5  0.67  0.70 
6  0.62  0.64 
SubTotal  0.57  0.58  

Total  0.56  0.57  

Fig. 5. Genetic offset predictions per year and adaptive zone, for each RCP. 
Bars represent an area-weighted average of each of 6 adaptive zones overlaid 
onto 4 genetic offset raster (2 RCPs and 2 Years). Genetic offset values (axis x) 
correspond to individual adaptive genomic distance computed as Jaccard index. 
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main environmental driver was temperature annual range. Coinciden
tally, this environmental driver has been also detected as most important 
in a common garden trial study (McIntosh et al., Unpublished results) 
reinforcing the power of landscape genomic approach to detect and to 
model adaptive divergence. In addition, we detected limiting factors 
influencing adaptive genomic variation (i.e., precipitation of the wettest 
month and precipitation of the driest month) probably reflecting phys
iological trade-offs associated with an aridity gradient. This is not sur
prising, since water stress has formerly been shown to be an active driver 
of adaptation and possibly the most globally selective force acting on 
trees, causing mortality in vegetation from arid zones to the understory 
of tropical rainforests (Engelbrecht et al., 2007; Allen et al., 2010). More 
importantly, a global population decline has been documented in 
Araucariaceae species during the Cretaceous, which has been attributed 
to climatic drying and cooling (Kershaw and Wagstaff, 2001). 

One key functional trait of this species is its remarkable isohydry, a 
physiological feature present principally in the basal clades of Gymno
sperms (Pinaceae, Araucariaceae). Isohydric species reduces stomatal 
conductance rates as soil water potential decreases and atmospheric 
conditions dry, maintaining a strict control over the leaf water potential 

and closing stomata by steadily increasing abscisic acid (ABA) concen
trations, showing a high sensibility to drought (Zimmer et al., 2016). 
Furthermore, according to Brodribb et al. (2014), tolerance to xylem 
failure due to water shortage in Araucariaceae was the least among 
conifer families. This costly and inefficient strategy to cope with water 
shortage stress could enhance intra-specific natural selection in abiotic 
gradients associated with drought in A. araucana. In a work that directly 
supports this hypothesis, Rafii and Dodd (1998), using foliar epicutic
ular wax alkanes as genetic markers, found longer chains of this wax in 
populations living in dryer habitats, consistent with a genetic adaptation 
to resist water loss in more arid conditions (Papú et al., 2021). In 
addition, Puchi et al. (2021) conducted a retrospective analysis for the 
1800–2017 period, measuring tree ring growth, wood anatomical traits 
and δ18O stable isotopes to assess dieback causes. They found that 
drought severity, expressed as SPEI (Standardized Precipitation- 
Evapotranspiration Index), was the main climatic driver of tree growth. 

Regarding of local adaptation structure given by db-RDA analyses, 
we found that a large amount of the explained among-individual genetic 
variation co-varied with the effects of environment, geography and 
ancestry (Table 2, Fig. S5) and a small, yet significant, proportion of 

Fig. 6. Continuous genetic offset maps of A. araucana for the years 2050 and 2070 under the RCP4.5 (up) and RCP8.5 (down) scenarios. Black and yellow represent 
high and low offset levels, respectively. 
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genetic divergence was explained exclusively by environmental condi
tions in both full and adaptive sets of SNPs. Such confounding effects of 
local adaptation with neutral processes are frequent and not mutually 
excluding in natural landscapes (Engelbrecht et al., 2007). Two main 
drivers could explain such confounding effects: a) the presence of se
lective gradients spatially correlated with demographic history (e.g., 
postglacial colonization along climatic gradients); and b) the simulta
neous action of natural adaptive and neutral processes shaping genetic 
variation and gene flow among populations. The presence of both 
drivers is supported by our genetic structure analysis, which showed 
different levels of ancestral admixtures in three ecologically divergent 
and distant areas. 

4.3. Genetic offset and conservation strategy 

Our results predict a high risk of maladaptation in the whole range of 
A. araucana, particularly in southern Andean piedmonts, which means 
that the amount of change in adaptive allele frequencies for preserving 
the observed genetic–environmental association will be high. Therefore, 
we propose that these populations be prioritized for conservation. In 
contrast, high elevations zones in Andes Mountain range will be the least 
affected by climate change. This could be interpreted as the continuation 
of demographic processes described in point 4.1: while the environment 
warms up, the cooler highlands become refuges for this species. How
ever, in this anthropogenic era this process is happening at a much faster 
rate. 

Unfortunately, longevity of this species slows down the rate of 
emergence and spread of new adaptive alleles in populations through de 
novo mutations, making this species particularly vulnerable to rapid 
climate change (Fajardo et al., 2019). To cope this, we propose an 
assisted gene flow conservation strategy to help A. araucana adapt to 
novel environments. Assisted gene flow is a controlled migration of in
dividuals or gametes among populations within the species range, which 
can be effective in accelerating adaptation to future climate conditions 
(Aitken and Whitlock, 2013). We suggest adopting a predictive seed 
sourcing strategy, mixing local with pre-adapted non-local seed lots to 
increase diversity and resilience. Candidate donor populations could be 
prospected by using an adaptive divergence model like the one proposed 
in this study, finding areas where current environmental conditions are 
similar to the future conditions in the recipient population. In addition, 
common garden experiments must be simultaneously conducted to test 
donor genotypes before implementing operational conservation pro
grams, in order to evaluate key traits and phenotypic plasticity. 

Assisted gene flow have unintended risks. One of these is the 
outbreeding depression, which consists of a reduction in the reproduc
tive fitness in the first or subsequent generations following attempted 
crossings of genetically distant populations (Frankham et al., 2011). 
This risk can, however, be empirically estimated and could therefore be 
manageable. 

4.4. Methodological challenges 

There is a consensus in the fact that loci under selection and mal
adaptation predictions by landscape genomic approach must be func
tionally validated in common garden and reciprocal transplant 
experiments (Li et al., 2017). According to this, we adopted conservative 
controls for putatively adaptive loci identification in all stages of this 
analysis. First, we reduced the initial dataset to a set containing only one 
SNP per fragment, minimizing the risk of linkage among markers. Then, 
we applied a consensus approach for two GEA analyses (LFMM and 
RDA), which required the loci to be identified by both genome scan 
methods, minimizing type I errors. This led us to exclude more than 
1,800 loci identified by the RDA. As a result, we retained 4.7% of the full 
set of SNPs as potentially adaptive; less than the 8.9 % reported by 
Strasburg et al. (Strasburg et al., 2012). Therefore, our findings were 
based on a high confidence adaptive genotypic matrix. In the second 

stage, to unravel the structure of local adaptation, we adopted two ap
proaches. First, a nonlinear distance-based model was fitted (GDM), and 
second, a distance-based redundancy analysis (db-RDA) was performed 
on both full and adaptive sets of SNPs. 

The variation explained by the db-RDA was lower than that 
explained by the GDM, possibly due to the linear nature of db-RDA, 
which weakens its power to reproduce non-linear patterns of allelic 
turnover along environmental gradients. Despite this, both approaches 
were equally able to detect the most important predictor (Temperature 
annual range). We believe that the development of novel statistical tools 
that combine non-linear approaches with ordination techniques could 
aid in disentangling the evolutionary forces driving adaptive diver
gence. Finally, a major challenge is to build a reference genome for 
A. Araucana to map adaptive loci for functional trait studies. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors thank the National Forestry Corporation (CONAF) of 
Chile, for funding genomic sequencing and giving access to the sampling 
sites. 

D.A. was supported by FONDECYT 3200675 grant. A.F. was funded 
by Fondecyt 1190900 grant. O.T.N. was funded by CONICYT PAI Sub
vencion a la instalacion en la Academia convocatoria 2019 77190055. 

Author contributions 

AVM and RH planned and designed the research; ECN designed 
sampling, collected tissue samples and executed the RAD-Seq prepara
tion; OTN, RH and FSE performed ipyrad analyses for provide SNPs data; 
DA provided environmental data and habitat suitability model; AVM 
perform statistical analyses, wrote R scripts and wrote mainly the 
manuscript; all authors contributed to the writing of the manuscript; AF 
edited and improved the manuscript; all authors approved the final 
manuscript. 

References 

Ahrens, C.W., Rymer, P.D., Stow, A., Bragg, J., Dillon, S., Umbers, K.D.L., Dudaniec, R.Y., 
2018. The search for loci under selection: trends, biases and progress. Mol. Ecol. 27 
(6), 1342–1356. 

Aitken, S.N., Bemmels, J.B., 2016. Time to get moving: assisted gene flow of forest trees. 
Evol. Appl. 9 (1), 271–290. 

Aitken, S.N., Whitlock, M.C., 2013. Assisted gene flow to facilitate local adaptation to 
climate change. Annu. Rev. Ecol. Evol. Syst. 44 (1), 367–388. 

Aitken, S.N., Yeaman, S., Holliday, J.A., Wang, T., Curtis-McLane, S., 2008. Adaptation, 
migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 
1, 95–111. 

Alarcón, D., Cavieres, L.A., 2015. In the right place at the right time: habitat 
representation in protected areas of South American Nothofagus-dominated plants 
after a dispersal constrained climate change scenario. PloS One 10, e0119952. 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 
Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., 
Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., 
Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree 
mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259 
(4), 660–684. 

Bay, R.A., Harrigan, R.J., Underwood, V.L., Gibbs, H.L., Smith, T.B., Ruegg, K., 2018. 
Genomic signals of selection predict climate-driven population declines in a 
migratory bird. Science 359 (6371), 83–86. 

Bi, D., Dix, M., Marsland, S., O’Farrell, S., Rashid, H., Uotila, P., Hirst, A., Kowalczyk, E., 
Golebiewski, M., Sullivan, A., Yan, H., Hannah, N., Franklin, C., Sun, Z., Vohralik, P., 
Watterson, I., Zhou, X., Fiedler, R., Collier, M., Ma, Y., Noonan, J., Stevens, L., 
Uhe, P., Zhu, H., Griffies, S., Hill, R., Harris, C., Puri, K., 2013. The ACCESS coupled 
model: description, control climate and evaluation. Australian Meteorl. 
Oceanographic J. (AMOJ) 63 (1), 41–64. 

A. Varas-Myrik et al.                                                                                                                                                                                                                          

http://refhub.elsevier.com/S0378-1127(21)00947-6/h0005
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0005
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0005
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0010
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0010
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0015
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0015
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0020
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0020
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0020
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0030
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0030
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0030
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0030
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0030
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0030
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0035
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0035
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0035
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0040
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0040
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0040
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0040
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0040
http://refhub.elsevier.com/S0378-1127(21)00947-6/h0040


Forest Ecology and Management 504 (2022) 119856

10

Brodribb, T.J., McAdam, S.A.M., Jordan, G.J., Martins, S.C.V., 2014. Conifer species 
adapt to low-rainfall climates by following one of two divergent pathways. Proc. 
Natl. Acad. Sci. 111 (40), 14489–14493. 

Capblancq, T., Forester, B.R., 2021. Redundancy Analysis (RDA): a Swiss Army knife for 
landscape genomics. Methods Ecol. Evol. https://doi.org/10.1111/2041- 
210X.13722. 

Capblancq, T., Luu, K., Blum, M.G., Bazin, E., 2018. How to make use of ordination 
methods to identify local adaptation: a comparison of genome scans based on PCA 
and RDA. bioRxiv, 258988. 

Caye, K., Jumentier, B., Lepeule, J., François, O., 2019. LFMM 2: fast and accurate 
inference of gene-environment associations in genome-wide studies. Mol. Biol. Evol. 
36, 852-860. 

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., 
Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R., 2011. 
The variant call format and VCFtools. Bioinformatics 27 (15), 2156–2158. 

de Sousa, L.M., Poggio, L., Batjes, N.H., Heuvelink, G., Kempen, B., Riberio, E., 
Rossiter, D., 2020. SoilGrids 2.0: producing quality-assessed soil information for the 
globe. Soil Discuss. 1–37. 

Derry, A.M., Fraser, D.J., Brady, S.P., Astorg, L., Lawrence, E.R., Martin, G.K., Matte, J. 
M., Negrín Dastis, J.O., Paccard, A., Barrett, R.D., 2019. Conservation through the 
lens of (mal) adaptation: Concepts and meta-analysis. Evolutionary Applications 12, 
1287-1304. 

Doyle, J., 1991. DNA Protocols for Plants. In: Hewitt, G.M., Johnston, A.W.B., W., Y.J.P. 
(Eds.), Molecular Techniques in Taxonomy. Springer-Verlag, Berlin, Germany, pp. 
283-293. 

Eaton, D.A., Overcast, I., 2020. ipyrad: Interactive assembly and analysis of RADseq 
datasets. Bioinformatics 36, 2592-2594. 

Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L., 
Hubbell, S.P., 2007. Drought sensitivity shapes species distribution patterns in 
tropical forests. Nature 447 (7140), 80–82. 

Fajardo, A., McIntire, E.J.B., Olson, M.E., 2019. When short stature is an asset in trees. 
Trends Ecol. Evol. 34 (3), 193–199. 

Ferrier, S., Manion, G., Elith, J., Richardson, K., 2007. Using generalized dissimilarity 
modelling to analyse and predict patterns of beta diversity in regional biodiversity 
assessment. Diversity and Distributions 13, 252-264. 

Fitzpatrick, M.C., Keller, S.R., Vellend, M., 2015. Ecological genomics meets community- 
level modelling of biodiversity: Mapping the genomic landscape of current and 
future environmental adaptation. Ecol. Lett. 18 (1), 1–16. 

Fitzpatrick, M.C., Mokany, K., Manion, G., Lisk, M., Ferrier, S., Nieto-Lugilde, D., 
Fitzpatrick, M.M.C., Rcpp, L., Rcpp, I., 2021. Package ‘gdm’. A toolkit with functions 
to fit, plot, and summarize Generalized Dissimilarity Models: CRAN Repository, R. 
Version 1.4.2.2. 

Fitzpatrick, M.C., Sanders, N.J., Ferrier, S., Longino, J.T., Weiser, M.D., Dunn, R., 2011. 
Forecasting the future of biodiversity: a test of single-and multi-species models for 
ants in North America. Ecography 34 (5), 836–847. 

Forester, B.R., Lasky, J.R., Wagner, H.H., Urban, D.L., 2018. Comparing methods for 
detecting multilocus adaptation with multivariate genotype–environment 
associations. Mol. Ecol. 27 (9), 2215–2233. 

Frankham, R., Ballou, J.D., Eldridge, M.D., Lacy, R.C., Ralls, K., Dudash, M.R., Fenster, C. 
B., 2011. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 
465–475. 

Frichot, E., François, O., O’Meara, B., 2015. LEA: An R package for landscape and 
ecological association studies. Methods Ecol. Evol. 6 (8), 925–929. 

Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., François, O., 2014. Fast and efficient 
estimation of individual ancestry coefficients. Genetics 196, 973-983. 

Frichot, E., Schoville, S.D., Bouchard, G., François, O., 2013. Testing for associations 
between loci and environmental gradients using latent factor mixed models. Mol. 
Biol. Evol. 30, 1687-1699. 

Gougherty, A.V., Keller, S.R., Fitzpatrick, M.C., 2021. Maladaptation, migration and 
extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11 (2), 
166–171. 

Gugger, P.F., Liang, C.T., Sork, V.L., Hodgskiss, P., Wright, J.W., 2018. Applying 
landscape genomic tools to forest management and restoration of Hawaiian koa 
(Acacia koa) in a changing environment. Evol. Appl. 11 (2), 231–242. 
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