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Multi-locus sequence typing (MLST) is a high-resolution genetic typing approach to identify species and
strains of pathogens impacting human health, agriculture (animals and plants), and biosafety. In this
review, we outline the general concepts behind MLST, molecular approaches for obtaining MLST data,
analytical approaches for MLST data, and the contributions MLST studies have made in a wide variety
of areas. We then look at the future of MLST and their relative strengths and weaknesses with respect
to whole genome sequence typing approaches that are moving into the research arena at an ever-increas-
ing pace. Throughout the paper, we provide exemplar references of these various aspects of MLST. The
literature is simply too vast to make this review comprehensive, nevertheless, we have attempted to
include enough references in a variety of key areas to introduce the reader to the broad applications
and complications of MLST data.

� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The vast majority of bacteria are harmless or beneficial, but the
few pathogenic strains are a major cause of human disease and
death. Bacterial pathogens are the etiological agents of a wide
range of infections including syphilis, cholera and tuberculosis
among others. Understanding the processes controlling transmis-
sion relies first and foremost on the ability to identify and accu-
rately distinguish between strains of infectious pathogens.
Accurate and efficient strain identification is also essential for epi-
demiological surveillance and subsequent design of public health
control strategies (Comas et al., 2009; Schulte and Perera, 1993).
Over the last decades, different molecular techniques have been
extensively exploited to identify isolates and localize disease out-
breaks, but their poor portability usually hindered, rather than elu-
cidated, pathogen epidemiology (Maiden, 2006; Urwin and
Maiden, 2003). To overcome this problem, molecular microbiology
took advantage of existing knowledge on bacterial evolution and
population biology, easy access and low cost of high-throughput
Sanger sequencing, and internet databasing resources, to propose
the nucleotide sequence-based approach of multilocus sequence
typing (MLST; Maiden et al., 1998). This procedure allows for the
unambiguous characterization of isolates from infectious agents
using sequences of internal fragments of usually seven housekeep-
ing genes (i.e., constitutive genes required for the maintenance of
basic cellular functions). Gene regions of approximately 450–
500 bp are sequenced and those found unique within a species
are assigned an allele number. Each isolate is then characterized
by the alleles at each of the seven loci, which constitute its allelic
profile or sequence type (ST).

The MLST approach provides an accurate assessment of species
and sometimes even strains and has the added advantage of also
providing population genetic insights into levels and directionality
of gene flow. This genetic based species diagnosis is much more
accurate than performing conventional immunological assays to
determine species and strain. Often, these phenotypic assays do
not reflect underlying genealogical information (e.g., Lewis-Rogers
et al., 2009). Thus, misdiagnoses can easily occur without relevant
genealogical information analyzed in an evolutionary and popula-
tion genetic framework (Crandall and Pérez-Losada, 2008). MLST
approaches provide such high-resolution genealogical data.

The first studies on bacterial population structure in the 1980’s
were fundamental to the development of MLST (Feil et al., 1999).
These studies revealed genetic exchange through recombination
as a major driving force in the evolution of most prokaryotes (Mai-
den, 2006). This finding changed the predominant paradigm of the
‘‘clonal model’’ in bacterial population genetics to a broader con-
cept of panmictic and partially clonal models (Smith et al., 1993).
Consequently, inferring genetic relatedness among isolates based
on single markers was unreliable and a new method was needed
that compared information from across multiple independent
markers. The MLST scheme played a major role in investigating
the extent of genetic structure in bacterial populations and rapidly
became the cornerstone technique for molecular typing of patho-
genic microorganisms (Maiden, 2006).

As currently used, MLST has achieved high levels of discrimina-
tion and has provided meaningful data to understand the evolution
and epidemiology of pathogens. But given the recent advances in
sequencing technologies, the question naturally arises: what is
the future of the MLST scheme in the genomic era? Technological
advances in high-throughput genome sequencing platforms (e.g.,
454 Roche, Illumina/Solexa, Ion Torrent, and ABI SOLiD) glimpse
a promising scenario to improve the resolution of molecular epide-
miological studies to the most accurate level ever seen and will
likely provide unprecedented insights into the evolution of bacte-
rial populations. Here we review the past, present, and future of
the MLST approach. Because of the extensive literature published
on the topic, this review cannot be comprehensive in its scope. In-
stead, we provide a summary on how the MLST scheme trans-
formed molecular epidemiological studies (Section 1), it is now
integrated within the next-generation sequencing techniques (Sec-
tion 2), it can be efficiently analyzed (Section 3) and contributed to
understand molecular epidemiology and evolution of bacterial
pathogens (Section 4). Moreover, we discuss the future of MLST ap-
proaches in the genomic era as whole genome data are rapidly
becoming available for pathogen studies (Section 5).

1.1. MLST databases: origins and recent advances via internet
resources

The MLST approach provided for the first time the reproducibil-
ity and portability needed to develop a worldwide pathogen-typ-
ing database easily accessible to public health and research
communities. The MLST scheme was first developed and available
via the Internet for the species Neisseria meningitidis (Maiden et al.,
1998), and this trend grew rapidly to include other bacterial spe-
cies (Enright and Spratt, 1998; Heym et al., 2002; Kriz et al.,
2002). The first MLST website was implemented early on in the
software MLSTdB, which was structured as a single combined data-
base (Chan et al., 2001). This first online resource worked well for
the small datasets initially produced, but as the number of
schemes available increased, several limitations as data redun-
dancy, isolate bias and access became apparent (Pérez-Losada
et al., 2011). Consequently, a reworked version of the original soft-
ware, namely MLSTdbNET (Jolley et al., 2004), was developed in or-
der to provide a network database structure. The premise behind
this new tool was the creation of separated databases to store iso-
late-specific information and allelic profiles, so that any number of
isolate databases could be constructed. Those databases are ac-
tively curated to avoid the accumulation of sequencing errors that
could lead to illusory alleles and ST profiles (Jolley, 2009). How-
ever, data retrieved from the databases comprise reported diver-
sity, but are unstructured and do not necessarily represent
natural populations (Urwin and Maiden, 2003).

MLST databases are now available for at least 79 organisms (75
for bacteria, 3 for fungi and 1 protozoan) and offer three main
types of queries: (1) allele sequence identification and comparison,
(2) allelic profile identification and comparison and (3) matching of
isolates. Most MLST schemes are available at the websites hosted
at the University of Oxford in the United Kingdom (http://pub-
mlst.org) and the United Kingdom’s Imperial College (http://
www.mlst.net), although some schemes can also be found at the
Environmental Research Institute, Cork, Ireland (http://mlst.ucc.ie)
and the Pasteur Institute, Paris (http://www.pasteur.fr/mlst). The
international mirrored PubMLST website provides access to the
abovementioned MLSTdbNET database, but also to the antigen se-
quence software (agdbNET) for bacterial typing (Jolley and Maiden,
2006), and to the recently developed Bacterial Isolate Genome

http://www.pubmlst.org
http://www.pubmlst.org
http://www.mlst.net
http://www.mlst.net
http://mlst.ucc.ie
http://www.pasteur.fr/mlst
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Fig. 1. Number of publications related to bacterial typing methods as a function of
time. Abbreviations are defined in Section 1. WGS = whole-genome sequencing.
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Sequence Database (BIGSDB), which implements a combined taxo-
nomic and typing approach for the whole domain of bacteria and
the analysis of linked phenotypic and genotypic information (Jolley
and Maiden, 2010). More recently, a Bayesian model-based method
also offers the possibility to automatically relate unidentified iso-
lates with information deposited in curated databases (Cheng
et al., 2011). This method can be used with any MLST dataset
through the software BAPS 5.4 (http://www.helsinki.fi/bsg/soft-
ware/).

Given the success of website technologies, recent efforts have
exploited the potential of Internet resources to incorporate geospa-
tial information in bacterial epidemiological studies (Aanensen
et al., 2009; Baker et al., 2010; Grundmann et al., 2010). The web-
sites www.spatialepidemiology.net/ and beta.mlst.net/Instruc-
tions/mlstmaps.html, for example, provide precise locality data
related to strain distribution and also provide a map-based inter-
face for displaying and analyzing epidemiological information.
Moreover, the portal www.eMLSA.net enables species identifica-
tion by means of a taxonomic platform. The integration of genomic
and epidemiological data together with geographic information
through MLST databases will greatly improve our ability to track
and prevent infectious pathogens and associated diseases.

1.2. The MLST scheme: a comparison with other bacterial typing
methods

To be useful, a strain typing method should provide enough dis-
criminatory power to distinguish between isolates from unlinked
sources and to be sufficiently reliable to cluster isolates from the
same source (Killgore et al., 2008; Unemo and Dillon, 2011). Since
its proposal in 1998, MLST rapidly emerged as the state-of-the-art
technique for bacterial molecular typing over other techniques
(Fig. 1). Unfortunately the MLST scheme is not the panacea to ad-
dress all questions pertaining to molecular epidemiology, and
alternative methods exist that offer complementary or even better
discriminatory power at different temporal scales (see Table 1). In
addition to this, the cost issue is also pivotal when choosing a bac-
terial typing technique and a considerable number of isolates need
to be investigated.

Currently, the main drawback of the MLST method is that the
selection of housekeeping loci requires a reference genome (Park-
hill et al., 2003; Sreevatsan et al., 1997). Moreover, the lack of
diversity throughout entire genomes or housekeeping genes in
some pathogens, as well as the presence of recently emerged spe-
cies or recent population bottlenecks, may yield the MLST scheme
very limited in discriminatory power (Harbottle et al., 2006; Pour-
cel et al., 2004; Torpdahl et al., 2005). Until the development of
MLST, the most widely used technique for indexing allelic variation
was the multilocus enzyme electrophoresis approach (MLEE). A
major drawback of the MLEE is that only genetic changes altering
the electrophoretic properties of the studied protein can be de-
tected (about one 20th of all possible mutations), and consequently
synonymous mutations are overlooked. Alternative gel-based
methods, such as the pulsed-field gel electrophoresis (PFGE),
restriction fragment length polymorphism (RFLP) or amplified
fragment length polymorphism (AFLP) offer a more affordable
alternative to the MLST scheme and can provide better resolution
at short-temporal scales in some bacterial species (Melles et al.,
2007). However, the MLST approach is usually preferred because
in all these gel-based approaches, comparison of results between
laboratories is often problematic and a high level of expertise is
needed to interpret and to translate banding patterns.

Another multiple-locus technique is the variable number of tan-
dem repeats analysis (MLVA), which is based on the analyses of
polymorphic repeated sequences (VNTR). Comparative studies be-
tween MLVA and MLST have yielded similar results (Elberse et al.,
2011; Malachowa et al., 2005; Schouls et al., 2006; Top et al.,
2004), and in recently originated species, the MLVA approach has
higher discriminatory power (Vergnaud and Pourcel, 2006). This
technique shares all the advantages of the MLST scheme in terms
of portability and reproducibility at a lower cost, but VNTR may
evolve too quickly to provide reliable phylogenetic relationships
among closely related strains and the size difference may not al-
ways reflect the real number of tandem repetitions because the
presence of insertions and deletions (Li et al., 2009).

Recently a new methodology has been proposed based on high
resolution melting curves (HRM) to distinguish single base varia-
tion and so identify SNPs without the burden of sequencing (Erali
et al., 2008; Taylor, 2009). After amplification, PCR products are
characterized in relation to their disassociation (melting) curves.
This method provides a rapid, close-tubed, highly efficient and
low cost strategy for detecting base substitutions and small inser-
tions or deletions (Millat et al., 2009). However, the detection of an
unidentified melting profile demands sequencing to identify the
new profile and thus an increasing cost.

In addition, the ribosomal multilocus sequence typing method
(rMLST) has been proposed to index the molecular variation of 53
genes encoding bacterial ribosome protein subunits (Jolley et al.,
2012a). This novel method pursues the integration of a taxo-
nomic and typing method in a similar curated MLST scheme.
Data generated can be easily accessed and accommodated in
the abovementioned database BIGSDB, a reference genome is not
required, targeted loci are conserved across the whole bacteria
domain and the reanalysis of existing allele designations is not
required (Jolley and Maiden, 2010). Although more expensive,
the rMLST is likely to provide better resolution than previous
methodologies, which coupled with the decreasing cost of
sequencing DNA make it a promising technique. The method still
requires further exploration, but certainly it has the potential to
provide a universal bacterial typing method extending the idea
of the MLST scheme.

Finally, in order to achieve greater resolution, a method has
been developed that relies on presence or absence of pan-genomic
or distributed genes among bacterial species that have the same
MLST profile. This clustering method leverages the massive
amount of whole genome information that is being accumulated
and has utility in resolving close strain relationships (Hall et al.,
2010). This novel method represents an affordable technique if

http://www.helsinki.fi/bsg/software/
http://www.helsinki.fi/bsg/software/
http://www.spatialepidemiology.net/
http://www.beta.mlst.net/Instructions/mlstmaps.html
http://www.beta.mlst.net/Instructions/mlstmaps.html
http://www.eMLSA.net


Table 1
Comparison of most common bacterial typing techniques (adapted from Foxman et al., 2005). See Section 1 for abbreviations referred to typing methods.

Typing
method

Method description No. of
markers

Temporal scale Variation
source

Discriminatory
power

Reproducibility Equipment/time Equipment/consumables-
reaction costs (per isolate)

Available databases

MLST PCR amplification of
housekeeping genes to
create an allelic profile

7 Macroepidemiological
Microepidemiological

DNA sequence Moderate to
high

High Thermal cycler/
moderate

$30–45 K
High �$80

pubmlst.org
www.mlst.net

mlst.ucc.ie
www.pasteur.fr/
mlst

MLEE Phenotypic characterization of the
electrophoretic mobility of
housekeeping enzymes

10–20 Macroepidemiological
Microepidemiological

Electrophoretic
mobility

Moderate Moderate Gel box, switching
unit, cooler, power
supply/moderate

$10–20 K
Moderate �$20

NA

PFGE Comparison of large genomic DNA
fragments after digestion with rare
restriction enzyme

NA Microepidemiological Banding
pattern

Moderate to
high

High Gel box, switching
unit, cooler, power
supply/high

$10–20 K
Moderate �$22

NA

AFLP Digestion of genomic DNA with two
restriction enzymes, ligation of
restriction fragments
and selective amplification

NA Microepidemiological Banding
pattern

Moderate to
high

Low Thermal cycler/
moderate

$8–12 K
Moderate �$20

NA

MLVA PCR amplification of VNTR
loci followed by sizing of the
PCR products to create
an allelic profile

10–80 Microepidemiological DNA sequence Moderate to
high

High Thermal cycler/low $30–45 K
Moderate �$20

minisatellites.u-
psud.fr
www.mlva.net
www.pasteur.fr/
mlst

HRM PCR amplification followed by
characterization of amplicon
melting curves

NA Macroepidemiological
Microepidemiological

Melting
temperature

High High Real time thermal
cycler/very lowa

$30–45 K
Very lowa

NA

RFLP Digestion of genomic DNA
with restriction enzimes to produce
multiple short restriction
fragments

NA Microepidemiological Banding
pattern

Low Low Southern transfer/
high

$8–12 K
Low �$14

NA

rMLST PCR amplification of rps
genes to create an allelic profile

53 Macroepidemiological
Microepidemiological

DNA sequence High High Thermal cycler/
moderate

$30–45 K
High �$600 (if WGS is not
needed)

http://pubmlst.org/
software/database/
bigsdb/

Pan-genome Detection of similarities/differences
in the pan-genomic or distributed
genes

>1000 Macroepidemiological
Microepidemiological

Presence/
absence of
genes

High High NGS platforms or
microarrays/
moderate to high

$80–130 K
Very high �$1–20 K per
run depending on the NGS
platform used

www.francisella.org

NA = not applicable.
a If new melting profiles are not detected.
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microarrays are used; however, the cost of this approach increases
dramatically if whole genome sequencing is required.
1.3. Population genetics and phylogenetics under the MLST scheme

The MLST scheme was originally proposed for the identification
of highly related bacterial genotypes (Maiden et al., 1998), but the
genealogical information inherited in the DNA sequences also al-
lowed one to address questions about species boundaries, popula-
tion dynamics, and evolutionary relationships (Spratt, 1999).
Different mechanisms for the exchange of genetic material among
bacteria were known for years (Lorenz and Wackernagel, 1994),
but their role on population structure was widely assumed to be
negligible. This paradigm radically changed after several studies
revealed extensive genetic exchange caused by recombination
(e.g., DuBose et al., 1988), which entailed a broad spectrum of bac-
terial populations ranging from fully clonal (recombination does
not effectively occur) to non-clonal populations (genetic diversity
is randomized by frequent events of genetic exchange). Subse-
quent evidence showed that those extremes are rare in nature,
and most bacterial population exhibit high levels of recombination,
but not sufficient to prevent the emergence of clonal lineages
(Spratt, 1999).

With population genetic and phylogenetic studies of bacterial
species, then, one is forced to examine the role of genetic recombi-
nation (Posada et al., 2002). In this regard, the MLST scheme tries
to overcome this problem by combining several neutral molecular
markers scattered across the genome that are relatively short in
length, thereby avoiding complications due to recombination (Mai-
den et al., 1998). As in all population studies, the sampling strategy
is critical to avoid bias towards certain isolates and to accurately
assess the overall genetic variation in the population. Housekeep-
ing genes usually offer enough resolution to accurately infer popu-
lation parameters and reconstruct phylogenetic relationships.
However there is no single core of universal genes that can be used
throughout all pathogens (but see Jolley et al., 2012a), since recom-
bination, substitution and selection rates vary across loci and spe-
cies (Pérez-Losada et al., 2006); therefore, choosing the appropriate
set of loci ultimately relies upon the biology of the individual spe-
cies under study (Spratt, 1999). Molecular phylogenetic studies
based on microbial populations face problems that are not often
encountered in typical evolutionary studies (Fraser et al., 2007).
Bacterial species typically exist as clusters of genetically related
strains (Acinas et al., 2004), but finding those clusters may not be
straightforward since high rates of recombination can certainly
render meaningless and misleading phylogenetic trees (Posada
and Crandall, 2002). In addition, isolates tend to be very closely re-
lated and frequently both the parent strains and their descendants
are included in the same sample (Hall and Barlow, 2006). Thus,
recombination requires a different paradigm for visualizing genea-
logical relationships as networks instead of trees (Posada and
Crandall, 2001) and special approaches for estimating population
genetic parameters that accommodate the biological reality of
recombination (Schierup and Hein, 2000).
1.4. Housekeeping genes: diversity levels and phylogenetic resolution

The MLST approach uses only a small fraction of the genome
(usually between 6 and 7 housekeeping genes of approximately
450–500 bp), which is assumed to be a representative sample of
the entire genome diversity (Didelot and Maiden, 2010). Protein-
encoding housekeeping genes are viewed as the most reliable
markers, since they are presumed to evolve slowly by the random
accumulation of neutral variation, providing much more reliable
data for both accurate typing and phylogeny estimation.
Levels of genetic polymorphism in housekeeping genes are usu-
ally high enough to assess population structure and strain related-
ness (Maiden, 2006). However, how much genetic variability is
necessary to accurately infer inter- and intra-species evolutionary
relationships remains an open question; similarly, the correlation
between gene function and phylogenetic resolution has been
barely addressed (Cooper and Feil, 2006; Ferreira et al., 2012; Zeig-
ler, 2003). For example, contrarily to expectations, Kuhn et al.
(2006), Robinson et al. (2005) and Cooper and Feil (2006) showed
for Staphylococcus aureus that the inclusion of rapidly evolving
genes under diversifying selection did not hamper the accurate
inferences of evolutionary parameters (Cooper and Feil, 2006;
Kuhn et al., 2006; Robinson et al., 2005); in fact, in the same stud-
ies, standard MLST genes provided the poorest phylogenetic reso-
lution. These results suggested that loci selection, at least at the
intra-species level, should be primarily based on nucleotide diver-
sity rather than gene function (Cooper and Feil, 2006). Hence, if
higher resolution is required, including more fast-evolving genes
(as those subject to positive diversifying selection) might be more
beneficial than adding more MLST genes (Maiden, 2006).

It is not clear what values of genetic variability yield better phy-
logenetic estimates or why variation greater than 1% generally
does not improve resolution (Cooper and Feil, 2006). As a general
rule, it has been suggested that loci comprising at least the average
diversity for all genes may have the potential to accurately trace
molecular epidemiological studies (Cooper and Feil, 2006). The
presence of ‘‘sufficient diversity’’ is a critical factor when analyzing
closely related strains within species. This issue becomes less prob-
lematic at higher taxonomic levels, and in that case, MLST data are
likely to provide the appropriate framework for studying molecular
epidemiology in microbial pathogens. Several studies have tried to
identify a universal set of housekeeping genes for bacterial typing
and prediction of phylogenetic relatedness at different taxonomic
levels (Stackebrandt et al., 2002; Zeigler, 2003). These studies have
shown that a careful selection of single genes could be sufficient
for discriminating between bacterial species, but the inference of
intrageneric evolutionary relationships may be difficult when a
small set of genes is used (Zeigler, 2003).

More recently, cutting-edge approaches based on full-genome
sequences have been applied with the expectation that including
more genetic data will buffer the effect of non-informative loci
(Schürch and van Soolingen, 2012). However, Ferreira et al.
(2012) have pointed out the need for a careful examination of
genomic features such as polymorphism dispersion, intergeneric
region sizes, and positively selected loci ratios; since these factors
may impact recombination and mutation rates differently, result-
ing in non-convergent and incongruent phylogenies. In agreement
with previous studies, Ferreira et al. (2012) also showed that inclu-
sion of positively selected genes did not prevent the accurate infer-
ence of the evolutionary parameters, and curiously, non-coding
regions yielded similar results. Although this study relates to a spe-
cific bacterial species, it provides valuable clues about the potential
of non-standard loci as potential markers for MLST. Currently, most
inferences on bacterial evolution have been and are still produced
using MLST data. However, next-generation sequencing platforms
now provide the means to capture multiple non-standard target
loci to detect single nucleotide polymorphisms or to sequence full
genomes. Such methods are briefly described in the next section.
2. Sequencing approaches to MLST

Next-generation sequencing (NGS) is permeating many aspects
of biology including those endeavors typically related to MLST
(Metzker, 2010). Although traditionally Sanger sequencing is still
used more than NGS, as revealed by a simple Web of Science search
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(Sanger/NGS = 2 � 106/5 � 104), the latter is gaining popularity for
reasons such as affordability (when sequencing large numbers of
samples), scalability, and marker discovery (gene mining). In this
section, we present a review of the sequencing approaches cur-
rently used in relation to MLST.

2.1. Sanger sequencing

Traditional Sanger sequencing still enjoys great popularity pri-
marily because of its low cost at small scales and perceived supe-
rior quality when it comes to error rates (Hoff, 2009). In a nutshell,
to carry a Sanger reaction we need a single stranded DNA molecule
plus dideoxy-nucleotides triphosphates (along with tagged chain
terminators) and a primer that will be extended by a DNA poly-
merase. Tagged amplicons of different lengths are then fraction-
ated via electrophoresis or with a chromatography capillary
column so that ‘‘color’’ tags are read and a digital consensus se-
quence is inferred. Sanger sequencing provides unambiguous
DNA sequence markers that can be used to design MLST schemes.
Read lengths, or the mean/mode length achieved by a sequencing
method, are typically longer in Sanger than those generated by
other sequencing approaches, which may reduce the number of
loci required for accurate bacterial characterization. Additionally,
Sanger is amenable to sequencing single molecules and therefore
reduces the potential impact of artificial recombination; implying
that all detectable recombinant signals come from real biological
events (Salazar-Gonzalez et al., 2008). Moreover, post-processing
in Sanger sequencing is simple compared to NGS, which lends itself
to be preferentially used in laboratories lacking strong bioinfor-
matic capabilities.

Sanger sequencing is still the gold standard for generating DNA
sequence data (Harismendy et al., 2009). One of its more attractive
features is its low error rate (from 0.0001% to 1%), which seems to
depend on the algorithms used for post-processing (Ewing and
Green, 1998; Ewing et al., 1998). NGS techniques such as pyrose-
quencing, on the other hand, report error rates of 0.49–2.8% (Haris-
mendy et al., 2009), though the technologies are improving
regarding sequencing chemistry and software.

2.2. Next-generation sequencing

Although Sanger sequencing still can fulfill the needs of many
microbiology labs, the prospects that NGS technologies offer, along
with the dimensions of their benefits, will likely surpass Sanger
sequencing (Castro-Nallar et al., 2012). Large-scale sequencing
Table 2
Comparison of NGS-based methods used in gene mining and sequencing.

Method Sequencing
technology

Read
length
(bp)

Genetic
markers
needed

Refe
geno
need

TAS 454 400–800a Yes Yes

HiMLST 454 400–800 Yes Yes

Anchored hybrid/ultra
conserved elements enrichment

Illumina 100 No Yesb

PRGmatic 454 400–800 No No

Traditional MLST Sanger 800 Yes Yes

a Read lengths reported on www.454.com using the new GS FLX + system.
b Although no reference is strictly needed, closely related genomic sequences are nec
c Numbers based on figures reported on original papers.
d For details about software used check original papers.
efforts using Sanger require expensive infrastructure and laborious
bench work (Medini et al., 2008). Several platforms and chemis-
tries are available within NGS; however, large-scale projects can
be done on a bench-top machine with ease (see Hui, 2012 for a
review).

NGS contributes at least twofold to the development of MLST
schemes. First, traditional MLST schemes need a reference genome
in order to develop appropriate markers (Table 2). Currently, there
are many genomes available from which one can extract marker
information (3.334 complete and 11.056 incomplete; GOLD data-
base; http://www.genomesonline.org). In fact, software implemen-
tations such as PhyloMark (http://sourceforge.net/projects/
phylomark/) are already accessible and can aid with genome-wide
marker examinations. The aim of PhyloMark is to identify the min-
imum number of markers that recapitulate a full genome phylog-
eny (Sahl et al., 2012) (Fig. 2B). Due to NGS technologies, the
number of available bacterial genomes is increasing at a fast pace.
However, still a large proportion of bacteria are lacking genome
information and thus the abovementioned strategies cannot be ap-
plied. Secondly, NGS has proved useful in generating sequence data
when little is known about the target organisms by providing the
raw material to extract markers for MLST schemes (Fig. 2C). Fur-
thermore, NGS read lengths are now falling within the size range
of the genes (450–500 bp) used in MLST (http://454.com), and with
the addition of multiplexing IDs (MID), it is possible to pool large
numbers of samples and still get the benefit of sequencing sample
targets with high depth (coverage).

Sanger sequencing is a mature technology with little room to
improve. In contrast, NGS technologies are rapidly evolving in a
complementary non-overlapping manner. For instance, pyrose-
quencing is improving both regarding homopolymer errors and
read lengths. On the other hand, Illumina systems do not provide
reads as long as those from pyrosequencing, but its coverage is
greater, which could be advantageous for assessing bacterial ge-
netic diversity in intra-host dynamics. A combination of high den-
sity short-read technologies (e.g., Illumina) with long read (but
relatively low accuracy) third-generation direct reads (e.g., Pacific
Biosciences) and novel assembly algorithms suggests a productive
approach for future bacterial genome sequencing and assembly
(Ribeiro et al., 2012).

To date, several methodologies have been put forward to im-
prove traditional MLST schemes, many of which are taking advan-
tage of NGS. In general, they fall into a category in which, given
presence or absence of genetic information, they use some sort of
gene/genomic region targeting (Fig. 2A and B) or enrichment
rence
me
ed

Library
preparation

Good for
mining

No. of
markersc

Bioinformatic post-
processing/software

No No 6 Genes for
>44 taxa

Medium/
barcodecruncher

No No 7 Genes for
>575 taxa

Medium/roche

Yes Yes 512/854 High/open or free
softwared

No Yes 780 Genes for
>20 taxa

High/open or free
softwared

No No 7 Genes Little/open or free
softwared

essary in order to design appropriate probes.

http://www.genomesonline.org
http://www.sourceforge.net/projects/phylomark/
http://www.sourceforge.net/projects/phylomark/
http://www.454.com
http://www.454.com


Fig. 2. Schematic diagram showing direct sequencing approaches to obtain and discover genetic markers for MLST analysis. Left (A and B) and right (C) panels show
approaches when genomic information is available or not, respectively. TAS = targeted-amplicon sequencing; HiMLST = high-throughput MLST; AHE = anchored hybrid
enrichment; UCE = ultra-conserved elements enrichment. See Section 2 for other abbreviations and further detail.
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(Fig. 2C) to obtain potential marker sequences that can be used in
downstream MLST applications. If genomic information of the
group of interest is available, it is possible to develop markers that
would resemble genomic relationships (Fig. 2B). In turn, if no infor-
mation is available except from related taxa, then it is possible to
design sequence capture experiments (usually with probes) to de-
velop or discover new markers (Fig. 2C). Alternatively, if no geno-
mic information exists for the group of interest, an enriched de
novo approach can be also applied to discover new markers.

With the decreasing cost of NGS, new affordable applications
have arisen to perfect or create new ways of generating and ana-
lyzing sequence-typing data. A natural step toward high-through-
put sequence typing is to combine the power of NGS with sequence
targeting for which some extent of variability is already known.
Methods relying on targeting known genes (Fig. 2A and B) or
enriching genomic fractions to discover new markers (Fig. 2C)
are now available (Table 2). In general, these methods, though
not heavily used yet, promise to overcome some of the limitations
of the MLST classic approach. For instance, the lack of a reference
genome might not be a limitation since by performing enrichment
steps prior to NGS, it is possible to single out large homologous re-
gions of the genome that can be scaled up to analyze larger data-
sets and/or more populations.

One example is the targeted-amplicon sequencing method
(TAS; Fig. 2A), which capitalizes on NGS to sequence a large num-
ber of regions from large numbers of pooled samples (Bybee et al.,
2011). Given its relatively longer reads (800 bps) compared to
other NGS technologies, pyrosequencing has been the preferred
choice of targeted approaches. Recently, a method was made avail-
able in which MLST genes are amplified in a two-step PCR using se-
quence specific primers that have attached MID (HiMLST), similar
to what it is routinely done when adding a restriction site to a tar-
get gene (Boers et al., 2012). Then, samples from multiple strains or
species are pooled and sequenced as usual in a 454 Roche machine.
It is worth noting that Roche 454 technology is able to deliver
reads of up to 800 bp (using the GS FLX + system), which may be
particularly useful for MLST analysis (www.454.com). This method
is essentially the same as the TAS method published earlier but
specifically designed for MLST. Both approaches use MID multi-
plexing capabilities, so costs are lowered by pooling samples. A
simple post-processing procedure guarantees that sequences are
obtained in a per strain/species basis, for example by using the
BarcodeCruncher software (http://crandalllab.byu.edu/Computer-
Software.aspx). The reported HiMLST protocol was able to profile
575 isolates from several bacterial species (7 genes). In addition,
the TAS protocol was able to obtain sequences from 6 genes over
44 taxa in a quarter plate (Table 2; Boers et al., 2012; Bybee
et al., 2011).

On the other hand, examples of directed sequencing by enrich-
ment are: (1) Anchored Hybrid Enrichment/Ultra conserved Ele-
ments (Faircloth et al., 2012; Lemmon et al., 2012) and (2) the
PRGmatic approach (Hird et al., 2011). Although these methods
have been originally developed for phylogenomics and high-level
systematics (i.e., phylogenies of species), they can also be applica-
ble to MLST, since multiple informative markers are also often
needed to resolve genealogical relationships among individuals.
Enrichment methods (or sequence capture methods) can be of help
when little is known about the species under scrutiny or the objec-

http://www.454.com
http://www.crandalllab.byu.edu/ComputerSoftware.aspx
http://www.crandalllab.byu.edu/ComputerSoftware.aspx
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tive is to discover new MLST markers. The PRGmatic approach, for
example, uses restriction enzyme-digested, size-selected genomic
DNA sequenced by pyrosequencing. Then, it clusters aligned reads
by identity into alleles and then into loci. A great innovation of the
method is that it generates a provisional reference genome (PRG)
that is further used to align reads and generate sequences for each
locus. In turn, the anchor hybrid enrichment method (or ultra con-
served elements enrichment by Faircloth et al., 2012), probably a
more powerful approach in terms of finding loci, attempts to ‘‘cap-
ture’’ conserved genomic regions using probes and then sequence
them using the Illumina platform. The post processing is fairly
straightforward in terms of bioinformatic burden, though trained
personnel are probably necessary to automate post-processing by
writing tailored computer scripts. Although this method is more
powerful regarding the number of loci recovered, it is likely to be
more expensive as well. In particular, DNA library generation could
be an economic burden for a medium-sized laboratory in terms of
initial investment (Table 2). However, per base or per loci sequenc-
ing costs are very low compared to other NGS-based methods.
Other enrichment methods are discussed elsewhere (Cronn et al.,
2012; Mamanova et al., 2010).

In principle, due to their higher sequencing power (up to 854
loci; Table 2), all the above mentioned approaches should help to
overcome some of the problems standard MLST schemes may
encounter, such as lack of diversity in genome or housekeeping
genes, or more importantly, the ability to detect patterns in emer-
gent species or in species under demographic or selective pro-
cesses. Very few studies looking at bacterial evolution and
epidemiology using these methodologies have been published so
far. As sequencing costs keep decreasing, we foresee an increase
in MLST studies using NGS. Coupling NGS to MLST is a challenge
and new strategies are starting to emerge. Recently, for example,
Table 3
List of population genetics programs listed in this review including their functionalities an

Data type Functionality

Alleles
STARS Allele assignment
START2 Data summary/exploratory analysis
eBURST Inference of patterns of evolutionary descent
goeBURST Inference of patterns of evolutionary descent using matroids
PHYLOViZ Inference of patterns of evolutionary descent

Nucleotides
Phylogenetics

MAFFT Sequence alignment
MAUVE Sequence alignment

JModeltest2 Selection of models of nucleotide substitution
RAxML ML inference of evolutionary relationships
GARLI ML inference of evolutionary relationships
PHYML ML inference of evolutionary relationships
MrBayes Bayesian inference of evolutionary relationships
BEAST Bayesian inference of evolutionary relationship
ClonalFrame Bayesian inference of clonal relationships considering recombinat

UMP Inference of reticulated evolutionary relationships
TCS Inference of reticulated evolutionary relationships
SplitTrees4 Inference of reticulated evolutionary relationships
BEST Coalescent inference of gene and species trees
⁄BEAST Coalescent inference of gene and species trees

Population dynamics
BEAST Coalescent inference of population parameters, demography and
LAMARC Coalescent inference of population parameters, demography and

PAML ML inference of population parameters and phylogenies
OmegaMap Bayesian inference of population parameters
HYPHY ML and Bayesian inference of population parameters and phyloge
SPREAD Bayesian phylogeography
Singh et al. (2012) developed a hairpin-primed multiple amplifica-
tion method that can amplify numerous target genes
simultaneously.

3. Analysis of MLST

Methods of analysis of MLST data can be classified in two basic
strategies: (a) those that rely on allele and ST designations to esti-
mate relatedness among isolates (allele-based methods) and so
ignore the number of nucleotide differences between alleles; and
(b) those that rely on nucleotide sequences directly to estimate
relatedness and population parameters (nucleotide-based methods)
(Table 3). The allele-based approach is thought to work well in
non-clonal organisms (e.g., Helicobacter pylori), while nucleotide-
based approaches are preferable for clonal organisms (e.g., S. aur-
eus), since the former approaches are likely misleading because
they cannot distinguish between single-base changes in multiple
loci versus multiple mutations in the same number of loci (Maiden,
2006). In practice, most microbes show some degree of clonality
(clonal complex) in their populations, hence, in principle, both
types of analyses could be carried out in population and epidemi-
ological studies (e.g., Tazi et al., 2010).

3.1. Allele-based methods

These types of methods require first the coding of DNA se-
quences from each locus into numbers using information available
in public MLST databases (see Section 1). If no match is found, a
new number is assigned in order of discovery. Several computer
programs, such as sequence typing analysis and retrieval system
(STARS), have been developed for this task. Once alleles have been
assigned, data are entered in the MLST databases to acquire an ST
d online links.

Link

http://sara.molbiol.ox.ac.uk/userweb/mchan/stars/
http://pubmlst.org/software/analysis/start2/
http://eburst.mlst.net/
http://goeburst.phyloviz.net/
http://www.phyloviz.net/wiki/

http://mafft.cbrc.jp/alignment/software/
http://asap.ahabs.wisc.edu/mauve/index.php
https://code.google.com/p/jmodeltest2/
http://www.exelixis-lab.org/
http://code.google.com/p/garli/
http://code.google.com/p/phyml/
http://mrbayes.sourceforge.net/
http://beast.bio.ed.ac.uk/Main_Page

ion http://www.xavierdidelot.xtreemhost.com/
clonalframe.htm
http://applications.lanevol.org/combineTrees/
http://darwin.uvigo.es/software/tcs.html
http://www.splitstree.org/
http://www.stat.osu.edu/~dkp/BEST/introduction/
http://beast.bio.ed.ac.uk/Main_Page

divergence times http://beast.bio.ed.ac.uk/Main_Page
divergence times http://evolution.genetics.washington.edu/lamarc/

index.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.danielwilson.me.uk/omegaMap.html

nies http://hyphy.org/w/index.php/Main_Page
http://www.kuleuven.ac.be/aidslab/phylogeography/
SPREAD.html

http://sara.molbiol.ox.ac.uk/userweb/mchan/stars/
http://pubmlst.org/software/analysis/start2/
http://eburst.mlst.net/
http://goeburst.phyloviz.net/
http://www.phyloviz.net/wiki/
http://mafft.cbrc.jp/alignment/software/
http://asap.ahabs.wisc.edu/mauve/index.php
https://code.google.com/p/jmodeltest2/
http://www.exelixis-lab.org/
http://code.google.com/p/garli/
http://code.google.com/p/phyml/
http://mrbayes.sourceforge.net/
http://beast.bio.ed.ac.uk/Main_Page
http://www.xavierdidelot.xtreemhost.com/clonalframe.htm
http://www.xavierdidelot.xtreemhost.com/clonalframe.htm
http://applications.lanevol.org/combineTrees/
http://darwin.uvigo.es/software/tcs.html
http://www.splitstree.org/
http://www.stat.osu.edu/~dkp/BEST/introduction/
http://beast.bio.ed.ac.uk/Main_Page
http://beast.bio.ed.ac.uk/Main_Page
http://evolution.genetics.washington.edu/lamarc/index.html
http://evolution.genetics.washington.edu/lamarc/index.html
http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.danielwilson.me.uk/omegaMap.html
http://hyphy.org/w/index.php/Main_Page
http://www.kuleuven.ac.be/aidslab/phylogeography/SPREAD.html
http://www.kuleuven.ac.be/aidslab/phylogeography/SPREAD.html


46 M. Pérez-Losada et al. / Infection, Genetics and Evolution 16 (2013) 38–53
profile. At this point exploratory analysis (e.g., allele and profile
frequencies, polymorphism estimates, codon usage, etc.) could be
performed using sequence type analysis and recombinational tests
(START2) software (Jolley et al., 2001). Relatedness among STs can
then be displayed using methods of cluster reconstruction such as
the simple unweighted pair group method with arithmetic mean
(UPGMA) and the based upon related sequences types (eBURST)
approach. The former method uses a matrix of distances among
STs to estimate isolate relatedness, while eBURST (Feil et al.,
2004) infers patterns of evolutionary descent among isolates using
a simple model of clonal expansion and diversification. A new
globally optimized version (goeBURST) has also been developed
that identifies alternative patterns of descent using graphic mat-
roids (Francisco et al., 2009). Recently, a new approach (PHYLOViZ)
has been released for microbial epidemiological and population
analysis that allows for the integration of allelic profiles from MLST
or MLVA methods (although Single Nucleotide Polymorphism data
can also be included) and associated epidemiological data (Fran-
cisco et al., 2012). PHYLOViZ uses goeBURST for representing the
possible evolutionary relationships between strains.

Allele-based methods have the advantage of simplicity and
speed, which are crucial for efficient epidemiological surveillance
and public health management, but disregard much of the evolu-
tionary information contained at the nucleotide level. They are,
therefore, better suited for exploratory data analysis rather than
fine statistical inference (Didelot and Falush, 2007). A larger and
more sophisticated plethora of nucleotide-based methods exist to
estimate isolate relationships and population parameters.

3.2. Nucleotide-based methods

Any analysis of nucleotide data usually begins with an align-
ment (i.e., estimation of site homology; Rosenberg, 2009). Several
fast and accurate strategies for aligning gene regions and genomes
are implemented in MAFFT (Katoh et al., 2005) and MAUVE (Dar-
ling et al., 2010), respectively. After the alignment has been gener-
ated, we need to determine the model of evolution that fits the
data the best. Model choice is a critical issue and the chosen model
(or lack thereof) will affect all subsequent phylogenetic (Sec-
tion 3.2.1) and population (Section 3.2.2) analyses (Kelsey et al.,
1999). This issue is usually assessed within a maximum likelihood
or Bayesian phylogenetic framework and under multiple criteria,
like the Akaike or Bayesian Information Criterion and marginal
likelihoods (see Baele et al., 2012; Posada and Buckley, 2004; Xie
et al., 2011). These and other model choice strategies are imple-
mented in JModeltest2 (Darriba et al., 2012).

3.2.1. Phylogenetic relatedness
Phylogenetic reconstruction methods can be divided into two

types, those that proceed algorithmically (e.g., UPGMA, Neighbor-
joining) and those based on optimality criteria. Here we will focus
on the latter since we find this feature particularly important for
analyzing MLST data; a more extensive review of phylogenetic
methods can be found in Pérez-Losada et al. (2007a).

Maximum likelihood (ML) inference attempts to identify the
topology that explains the evolution of a set of aligned sequences
under a given model of evolution with the greatest likelihood (Fel-
senstein, 1981). RAxML (Stamatakis, 2006), GARLI (Zwickl, 2006) or
PHYML (Guindon et al., 2010) implement the ML criterion effi-
ciently and accurately and can handle datasets of >1.000 se-
quences. Confidence in the estimated ML relationships (i.e., clade
support) can be assessed using the nonparametric bootstrap proce-
dure (Felsenstein, 1985).

Bayesian inference (BI) combines the prior probability of a phy-
logeny with the likelihood to produce a posterior probability distri-
bution of trees, which can be interpreted as the probability that the
tree(s) is (are) correct (Huelsenbeck et al., 2001). BI has advantage
over ML approaches both in accounting for uncertainty in the phy-
logeny and model parameters estimated, and allowing for hypoth-
esis testing. Clade support is estimated by summarizing the
frequency of that clade across a distribution of trees through a con-
sensus analysis. Bayesian phylogenies are estimated using Metrop-
olis-coupled Markov chain Monte Carlo (MC3) methods and both
are implemented in programs like MrBayes (Ronquist and Huel-
senbeck, 2003) or BEAST (Drummond and Rambaut, 2007). The
output generated by these programs can then be evaluated in Tra-
cer (Rambaut and Drummond, 2009) to confirm that MC3 chains
have mixed well and converged.

Standard phylogenetic methods assume a lack of recombina-
tion, an assumption violated by many microorganisms. Hence if
recombination is suspected in our data, we should first detect
and eliminate recombinant regions or identify breakpoints (see
Section 3.2.2 below), so alignments can then be subdivided into
non-recombinant regions and analyzed separately. Alternatively,
one could use an approach that takes homologous recombination
into account while inferring clonal relationships between the
members of a sample. Such a method is implemented in Clonal-
Frame (Didelot and Falush, 2007) within a Bayesian coalescent
framework. Similarly, phylogenetic strategies that assume a retic-
ulated model of evolution (network) instead of a bifurcating tree
may be better when recombination is substantial (Posada and
Crandall, 2001); the Union of Maximum Parsimonious trees (Cas-
sens et al., 2005) and TCS (Templeton et al., 1992) are two of such
approaches and both perform well under relatively low levels of
diversity and recombination (Woolley et al., 2008). Another
broadly used network approach is SplitsTree4 (Huson and Bryant,
2006). An interesting application of the network strategy has been
recently developed by Plucinski et al. (2011) to infer local and glo-
bal properties of the host populations in commensal bacteria.

Often gene trees differ even when sampled from the same pop-
ulation. This can be the result of molecular processes (e.g., recom-
bination) or stochastic variation (e.g., incomplete lineage sorting).
New coalescent methods have been developed to deal with sto-
chastic variation in gene trees. Among these, the Bayesian-based
BEST (Liu, 2008), STEM (Kubatko et al., 2009), and ⁄BEAST (Heled
and Drummond, 2010) approaches are well suited to estimate
the joint posterior distribution of gene trees and the organism tree
using multilocus molecular data.
3.2.2. Population dynamics
The evolution of DNA sequences in natural populations can be

described by parameters like recombination, mutation, growth
and selection rates. Indeed, the accurate estimation of these
parameters is key for understanding the dynamics and evolution-
ary history of those populations, their epidemiology, and ulti-
mately for applying efficient public health control strategies.
Population parameters are more efficiently estimated using expli-
cit statistical models of evolution such as the coalescent approach,
hence here we describe some population parameter estimators
based on such models.

Recombination is generally defined as the exchange of genetic
information between two nucleotide sequences. Comprehensive
reviews of statistical methods for detecting and estimating recom-
bination rates are presented in Posada et al. (2002); although since
then, new methods have been developed (e.g., Jeffrey, 2004; Lefeb-
vre and Labuda, 2008; Padhukasahasram et al., 2006; Wang and
Rannala, 2008, 2009) and revised (e.g., Auton and McVean, 2012;
Martin et al., 2011; Stumpf and McVean, 2003). Posada et al.
(2002) concluded that multiple methods should be used to detect
or estimate recombination. Consequently, software packages like
RDP4 (Martin et al., 2010) have been developed to implement up
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to eight recombination estimators that allow the user to draw con-
clusions based on the outcome of multiple tests.

Genetic diversity is the most important population parameter
and is usually estimated in relation to recombination as the rate
of recombination to mutation (r/m), so the relative impact of each
force on generating microbe genetic diversity can be assessed (Feil
et al., 1999). Reviews of classical and coalescent statistical methods
for estimating genetic diversity can be found in Pearse and Crand-
all (2004), Excoffier and Heckel (2006) and Waples and Gaggiotti
(2006); nonetheless newer methods have been developed since
these reviews (e.g., Bashalkhanov et al., 2009).

Growth rates reflect the variation of genetic diversity along
time. Growth can be estimated under a certain demographic model
(e.g., exponential) or without dependence on a pre-specified mod-
el, such as the Bayesian skyline plot (Drummond et al., 2005) or the
Skyride model (Minin et al., 2008), both implemented in BEAST.
Interestingly, BEAST also allows for the analysis of temporally
spaced sequence data. Recombination, genetic diversity, and expo-
nential growth rates can all be estimated in LAMARC (Kuhner,
2006).

The standard method for estimating selection in protein-coding
DNA sequences is through the nonsynonymous (dN) to synony-
mous (dS) amino acid substitution ratio dN/dS (x). x > 1 indicates
adaptive or diversifying selection, x < 1 purifying selection and
x � 0 lack of selection. x is usually estimated within a ML phylo-
genetic framework and assuming an explicit model of codon sub-
stitution. If significant evidence (usually obtained through
likelihood ratio tests) of adaptive selection is obtained, then Bayes-
ian tests can be applied to detect amino acid sites under selection
(e.g., Yang et al., 2005). These methods are implemented and de-
scribed in more detail in PAML (Yang, 2007). If recombination is
present, other methods exist that can estimate recombination
and selection rates simultaneously (OmegaMap; Wilson and McV-
ean, 2006), or account for the former while estimating the latter
(HYPHY; Kosakovsky Pond et al., 2005).

Other key factors in pathogen dynamics are the time of emer-
gence of the epidemic and the geographical distribution of patho-
gens. New probabilistic models have been recently developed
within the Bayesian framework (Lemey et al., 2009, 2010) that al-
low the inference and hypothesis testing of divergence times,
ancestral locations and historical patterns of migration (i.e., phy-
logeographic history). Those parameters can be estimated in BEAST
and SPREAD (Bielejec et al., 2011) and visualized using virtual
globe software like Google Earth (www.google.com/earth/in-
dex.html). Such methods have already begun to be applied to the
analysis of MLST and/or genome and SNP (see Section 5) data (Gray
et al., 2011; McAdam et al., 2012; Weinert et al., 2012). Similarly,
divergence times and ancestral states can be also estimated in
LAMARC.
4. Applications of MLST

The popularity of MLST is driven by its ease of use and discrim-
inating power. Consequently, over the last few years we have seen
not only an increase in MLST schemes (Fig. 1) and sequence types
available, but also in the diversity of their applications. Although
primarily developed for pathogen identification (typing), MLST se-
quence data have also been applied to other aspects of molecular
epidemiology (e.g., disease transmission, evolution of virulence)
and public health (e.g., monitor vaccination programs), as well as
to other areas such as phylogenetics, taxonomy, speciation, popu-
lation genetics, biosafety, and even to the inference of human
migrations. Below we list a series of examples taken from the most
recently published literature showing some of those applications.
4.1. Molecular epidemiology and public health

MLST has become the routine typing approach for the identifi-
cation of clinical specimens. Accurate and quick characterization
of organisms is crucial for epidemiological surveillance (Brehony
et al., 2007; Trotter et al., 2007), detection and management of dis-
ease outbreaks (Byrnes et al., 2010; Palazzo et al., 2011; Vanderko-
oi et al., 2011), estimate prevalence rates (Haran et al., 2012; Ibarz-
Pavon et al., 2011; Sproston et al., 2011) or study horizontal
(Stensvold et al., 2012; Walker et al., 2012) and vertical (Makino
et al., 2011; Martin et al., 2012) transmission of infectious agents.
Interestingly, new epidemic models have been recently developed
that make use of MLST data to infer social network structure in
ubiquitous commensal bacteria too (Plucinski et al., 2011). MLST
has also helped to investigate the emergence and spread of antibi-
otic resistance to meticillin, erythromycin, macrolides and quino-
lones (Atkinson et al., 2009; De Francesco et al., 2011; Egger
et al., 2012; Haran et al., 2012; Ibarz-Pavon et al., 2011; Pérez-Los-
ada et al., 2007b; Tazi et al., 2010) and virulence (including virulent
factors and genes and diseases associations) (Ch’ng et al., 2011;
Dingle et al., 2011; Matsunari et al., 2012; Schultsz et al., 2012;
Springman et al., 2009). It has also been used to monitor the effects
of vaccination programs (pre and post-vaccine) (Adetifa et al.,
2012; Climent et al., 2010; Hanage et al., 2011; Maiden and Stuart,
2002; Pichon et al., 2009; Stefanelli et al., 2009), improve vaccina-
tion strategies (Hanage et al., 2011; Racloz and Luiz, 2010; Stefa-
nelli et al., 2009), and design new vaccines and new approaches
to vaccination against Streptococcus pneumoniae and N. meningiti-
des (Bambini et al., 2009; Pizza et al., 2000; Urwin et al., 2004). Fi-
nally, MLST has also contributed to the identification of sources of
human infection from natural hosts (e.g., livestock animals and
dogs) and environmental (e.g., animal-derived food) reservoirs
(Bessell et al., 2012; Gripp et al., 2011; Ngo et al., 2011; O’Mahony
et al., 2011), to identify host or niche associations (Hotchkiss et al.,
2011; Sheppard et al., 2010a; Sproston et al., 2011) and zoonotic
transmissions (Sahin et al., 2012; Sakwinska et al., 2011; Walther
et al., 2012), and to study biological interactions like symbiosis in
Wolbachia from insects (Russell et al., 2009).

4.2. Phylogenetics, taxonomy, and speciation

MLST data have been used to infer clone and species relation-
ships and phylogroups in pathogenic (e.g., Actinomyces) and bene-
ficial (e.g., Oenococcus oeni and Trypanosoma cruzi) microbiota
(Bilhere et al., 2009; Bridier et al., 2010; Henssge et al., 2011;
Yeo et al., 2011), separate and validate similar or sibling species
of Streptococcus oralis and Lactobacillus delbrueckii (Do et al.,
2009; Tanigawa and Watanabe, 2011) and identify new ones in,
for example, the genera Bartonella, Bacillus and Burkholderia (Cha-
loner et al., 2011; Guinebretiere et al., 2012; Vanlaere et al.,
2008, 2009), suggest new taxonomic classifications (e.g., Lactococ-
cus lactis) (Passerini et al., 2010), validate COI barcodes in Wolba-
chia (Smith et al., 2012), and to discuss the bacterial species
concept (Godreuil et al., 2005; Vos, 2011). MLST data are particu-
larly useful for species diagnosis, as they provide both genealogical
information as well as information on recombination (see below),
which is critical for bacterial species identification (Dykhuizen
and Green, 1991; Fraser et al., 2007), as revealed in Streptococcus
(Ahmad et al., 2009).

4.3. Population structure and dynamics

MLST has been instrumental at confirming the clonal structure
of many organisms like S. aureus (see Pérez-Losada et al., 2006 for a
review); but also at identifying epidemic clonal complexes in other
taxa like Staphylococcus haemolyticus (Cavanagh et al., 2012), Yer-
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sinia pseudotuberculosis (Ch’ng et al., 2011) or Streptococcus suis
(Schultsz et al., 2012); or even taxa considered non-clonal, such
as Pseudomonas aeruginosa (Maatallah et al., 2011) or Burkholderia
pseudomallei (Dale et al., 2011).

MLST data have been used to infer population structure at both
temporal (de Filippis et al., 2012; Pérez-Losada et al., 2007c; Spro-
ston et al., 2011) and geographical scales (Jorgensen et al., 2011) in
for example Neisseria and Campylobacter, and to infer the epidemi-
ological processes that may be responsible for the contemporary
geographic distributions of diseases (phylogeography). For exam-
ple, phylogeographic structure driven by host immunity has been
detected in S. aureus from West China (Fan et al., 2009), while hu-
man activity has driven differentiation in Clostridium difficile iso-
lates from North America, Europe, and Australia (Stabler et al.,
2012). Similar studies based on MLST data have determined the
geographic origin of Mannheimia haemolytica in European cattle
and sheep (Petersen et al., 2009).

Another major contribution of MLST to bacterial population
genetics has been the assessment of the relative impact of recom-
bination and point mutation (the r/m ratio) in bacteria and archaea
(Vos and Didelot, 2009) and within and among clones of, for exam-
ple, N. meningitidis, S. aureus, Y. pseudotuberculosis or Streptococcus
dysgalactiae (Basic-Hammer et al., 2010; Ch’ng et al., 2011; Feil
et al., 1999, 2000; McMillan et al., 2010, 2011) or among species
of Streptococcus (Ahmad et al., 2009; Do et al., 2010). MLST has also
effectively identified the impact of selection in Orientia tsutsuga-
mushi, N. meningitidis, Bacillus cereus, Group B Streptococcus or Vib-
rio parahaemolyticus (Duong et al., in press; Jolley et al., 2005;
Raymond et al., 2010; Springman et al., 2009; Yan et al., 2011)
and the contributors to population genetic diversity (see also
Pérez-Losada et al., 2006). Similarly, MLST has provided insights
on past population dynamics (epidemiological history), inferred
as the variation in relative genetic diversity (or population size)
since some time in the past, usually the time of emergence of the
disease, in Neisseria gonorrhoeae (Pérez-Losada et al., 2007b,c; Tazi
et al., 2010).
4.4. Other applications

MLST data have also been applied to biosafety research such as
the detection of contamination with S. aureus in Portuguese public
buses (Simoes et al., 2010), US West Coast public marine beaches
(Soge et al., 2009), and in the working environment of many Swiss
microbial laboratories (Schmidlin et al., 2010). Besides farm ani-
mals (above), MLST has also been applied in plant agriculture to
identify genomospecies of Pseudomonas syringae causing bacterial
leaf spot on parsley (Bull et al., 2011) and assess nodule occupancy
of soybean by in Bradyrhizobium (Van Berkum et al., 2012), or to
study the evolution of agriculture-associated disease caused by
Campylobacter coli in farm animals from Scotland (Sheppard
et al., 2010b). Another interesting application has been the tracing
of ancient human migrations worldwide (Falush et al., 2003) or
across India (Devi et al., 2007) and Malaysia (Tay et al., 2009), using
H. pylori MLST data from human gastric mucosa.

Overall, MLST studies have both increased our knowledge of the
diversity, population structure and dynamics of bacterial patho-
gens worldwide (basic research) and helped to design better strat-
egies of control and treatment of the diseases caused by those
pathogens (applied research), which ultimately has contributed
to improve public health.
5. MLST in the genomic era

With advances in DNA sequencing technologies comes the nat-
ural question of whether or not MLST will continue to have utility
in the next-gen $1000 human genome era. The great advantage of
MLST is the unlinked survey of genetic variation at the DNA se-
quence level at a relatively cheap and efficient cost (Okoro et al.,
2012). Yet the next-gen sequencing technologies are rapidly mak-
ing these advantages mute (Chan et al., 2012). NGS also relieves
some of the disadvantages of MLST (detailed above), including
the need to have a genome of the target organism to begin with,
the lack of broad application of individual loci across a diversity
of species [because levels of genetic diversity and amounts of
recombination vary across species for the same locus; but see Jol-
ley et al. (2012a)], and shorter read lengths to avoid complications
of recombination. Next we highlight two approaches for incorpo-
rating NGS into pathogen typing, first through single nucleotide
polymorphism (SNP) analysis and second through whole genome
sequence analysis. We then consider the bioinformatic implica-
tions and complications of dealing with this totally different vol-
ume of data and the associated challenges.

5.1. SNP discovery and typing

The first typing approach taking full advantage of whole-gen-
ome sequence data is that of SNP analysis. The central idea here
is to get not just a single reference genome, as is the case with
MLST typing, but a number of reference genomes to identify poly-
morphic sites within the genome. These sites or SNPs can then be
used as diagnostic markers for specific species and/or strains with-
in species, depending on the extent of variation in the species. Ide-
ally, for species diagnostics based on SNPs, one is looking for fixed
differences between species. Thus, the method becomes problem-
atic if only a few reference genomes are used to establish whether
variants are fixed or not within a species. This problem becomes
worse when trying to diagnose strains within species, as many
more samples are needed to effectively determine fixation of SNPs
within strain and differences among strains. However, the advan-
tage of SNPs is that they can provide broader genomic representa-
tion with less linkage (thereby lessening the potential impact of
recombination). They are also relatively evolutionarily stable. Be-
cause these are genotypic data with character state information,
they are amenable to robust phylogenetic and population genetic
analyses (detailed above). SNP analyses have been used in patho-
gen population genetics for a number of years now with highly
effective results (e.g., Filliol et al., 2006). Initially, SNPs were rela-
tively expensive characters to develop for species typing; however,
they have become highly efficient and effective for a variety of spe-
cies. For example, Holt et al. (2010) used a survey of 2000 SNPs to
identify strains of Salmonella enterica serovar Typhi causing a ty-
phoid outbreak in children from Kathmandu, Nepal. More recently,
Harris et al. (2012) used genome-wide SNPs of diverse Chlamydia
trachomatis strains to identify phylogenetic relationships masked
by recombination in current clinical typing (ompA). This study,
hence, demonstrates how the whole genome data allow for the
identification and therefore accommodation of recombination
within the dataset and subsequent phylogenetic analyses.

5.2. Whole genome sequence typing (WGST)

With costs of whole genome sequencing coming down signifi-
cantly through new technologies and better software (Ribeiro
et al., 2012) and the need for whole genome data for both MLST
and SNP approaches, recent studies have simply turned to elimi-
nating these subsequent approaches for typing and used the whole
genome data per se. The advantages of whole genome sequence
typing (WGST) are clear – the highest resolution of genealogical
data possible. This resolution has been instrumental to examine
and reclassify species of Neisseria (Bennett et al., 2012). Here the
authors studied the taxonomic relationships of 55 Neisseria repre-
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sentatives using 246 core genes (including 53 rps genes) and
BIGSDB. Variation in these genes identified seven species groups,
which were not completely congruent with current species and
isolate designations. Moreover, the seven groups could be reliably
and rapidly identified using the rps genes, further confirming the
efficiency and power of rMLST (as also demonstrated by Jolley
et al., 2012a). Demonstrating the resolving power of WGST against
other genetic (SNPs) and phenotypic (RFLP, VNTR) approaches in
distinguishing strains of Mycobacterium tuberculosis, Schürch and
van Soolingen (2012) argued that WGST will become the sole diag-
nostic tool of tuberculosis, including genetic characterization and
drug resistance and susceptibility testing. However, others argued
for a more integrated approach (combining SNP analysis with
WGST), especially while sequencing costs are still high and may
subject studies to issues of sampling bias (Pearson et al., 2009).
But with technological advances occurring regularly, we are
quickly moving to the full capacity of WGST (see Fig. 1 – WGS)
as a standard operating procedure (Vogel et al., 2012). Studies have
also shown that WGST and comparative genomics can reveal un-
ique genetic elements missed by lesser resolution approaches such
as SNP and MLST typing (Köser et al., 2012).
5.3. Bioinformatic considerations

Despite the significant promise of next generation sequencing
techniques leading to whole genome sequence typing for pathogens,
the move to whole genome analysis is not without challenges. The
most significant of these is the ability to analyze this new volume
of data in a reasonable and efficient manner. In this regard, Jolley
et al. (2012b) demonstrate how whole-genome data from a menin-
gococcal disease outbreak can be analyzed in real time by investiga-
tors using the analytical tools integrated into the PubMLST.org
website.

With WGST comes also the need for genome assembly which
can be fraught with difficulty (Schatz et al., 2010) and thereby intro-
duce errors in assembled genomes that will appear as strain specific
variation. Thus, ultimate care must be taken with analyses of whole
genome data both at the assembly stage and downstream analyses.
One approach to deal with this volume of data is to relate these
whole genome sequence data back to MLST (Larsen et al., 2012).
However, this approach then looses the advantages of WGST over
MLST, including a broader survey of genetic signatures that are of-
ten critical in identifying causal agents of pathogenic outbreaks
(e.g., Eppinger et al., 2011). An alternative approach is to map raw
sequence reads to a reference database of pathogens for rapid and
efficient identification of pathogens associated with a next-gen
sequencing run from a biological sample (Clement et al., 2010). This
approach has the advantage of avoiding the assembly step alto-
gether, but requires a robust reference library of genomes to query
against. No doubt substantial methodological advances will occur
as more and more whole genome sequence data sets become avail-
able for consideration (e.g., Ribeiro et al., 2012).
6. Conclusions and prospects

MLST has played a major role in diagnosing pathogens of hu-
man disease. Rapid identification of such pathogens is crucial in
our ability to identify, track, and treat disease outbreaks. MLST
has proven to be a high-resolution genetic approach that provides
data amenable to sophisticated phylogenetic and population ge-
netic analyses. However, with the decrease in cost of genome
sequencing, researchers are already moving to whole genome se-
quence analyses for such studies. We are clearly in the transition
phase moving from MLST to whole genome sequencing typing
and this shift provides extensive opportunity for the development
of novel methodologies to accommodate this increased volume of
genomic information.
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