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Abstract 

Persistent organic pollutants (POPs) are synthetic compounds that were intentionally produced in large quantities and have 35 

been distributed in the global environment, originating a threat due to their persistence, bioaccumulative potential and toxicity. 

POPs reach the Antarctic continent through long-range atmospheric transport. In these areas low temperatures play a 

significant role in the environmental fate of POPs, retaining them for a long-time due to cold trapping by diffusion and wet 

deposition, acting as net sink for many POPs. However, in the current context of climate change, remobilization of POPs 

trapped for decades in water, ice, and soil, is happening. Therefore, continuous monitoring of POPs in polar air is necessary to 40 

assess whether there is a recent re-release of historical pollutants back to the environment. We reviewed the scientific literature 

on atmospheric levels of several POPs families (polychlorinated biphenyls PCBs, hexachlorobenzene HCB, 

hexachlorocyclohexanes HCHs, and DDT) from 1988 to 2021. We estimated the atmospheric half-life using characteristic 

decreasing times (TD). We observed that HCB levels in the Antarctic atmosphere were higher than the other target OCs, but 

HCB also displayed higher fluctuations and did not show a significant decrease over time. Conversely, the atmospheric levels 45 

of HCHs, and some,DDTs, and PCBs have decreased significantly. The estimated atmospheric half-lives for POPs decreased 

in the following order: 4,4’ DDE (13.5 years) > 4,4’ DDD (12.8 years) > 4,4’ DDT (7.4 years) > 2,4´ DDE (6.4 years) > 2,4´ 

DDT (6.3 years) > α-HCH (6 years) > HCB (6 years) > γ-HCH (4.2 years), while for PCB congeners they decreased in the 

following order: PCB 153 (7.6 years) > PCB 138 (6.5 years) > PCB 101 (4.7 years) > PCB 180 (4.6 years) > PCB 28 (4 years) 

> PCB 52 (3.7 years) > PCB 118 (3.6 years). For HCH isomers and PCBs, the Stockholm Convention ban on POPs did have 50 

an impact on decreasing their levels during the last decades. Nevertheless, their ubiquity in the Antarctic atmosphere shows 

the problematic issues related to highly persistent synthetic chemicals. 
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1 Introduction 

 55 

Persistent Organic Pollutants (POPs) are a group of toxic chemicals primarily produced and used by the agricultural, 

industrial, and household applications during the third industrial revolution (Safe, 1994; Qiu et al., 2004; Jayaraj et al., 2016). 

In the last three decades, studies have reported that POPs levels have soared in the environment worldwide, as these chemicals 

are highly stable and resistant to degradation (Pennington, 2001). This persistence and their hydrophobicity result in POPs 

bioaccumulation within organisms and biomagnification along food webs (Hop et al., 2002; Fisk et al., 2001a; 2001b; Borga 60 

and Di Guardo, 2005), where they may elicit toxic effects, such as endocrine disruption, threatening the health of both wildlife 

and humans (Brown et al., 2014; Bourgeon et al., 2012). Given their detrimental effects, 31 substances/substance groups of 

POPs are currently regulated internationally by the Stockholm Convention (SC), which seeks to reduce and eliminate POPs 

production and use (UNECE, 1998; UNEP, 2006). However, despite regulatory action among SC signatory nations, 

considerable levels of POPs are still detected in water, atmosphere, biota, and sediments worldwide due to their persistence, 65 

potential for long range transport, as well as their current emission sources (e.g., Vergara et al., 2019; Vasseghian et al., 2021; 

Avila et al., 2021; Die et al., 2021; García-Cegarra et al., 2021). Of utmost concern, these toxic pollutants are present in the 

environmental compartments of regions far from emission sources that have previously been considered pristine areas, 

including polar regions (Galbán-Malagón et al., 2013a; 2013b; 2013c; Pozo et al., 2017; Wu et al., 2020; Azcune et al., 2022; 

Xie et al., 2022). 70 

The Antarctic continent is the most remote region from primary sources of POPs (Von Waldow et al., 2010). POPs 

reach Antarctica mainly through long-range atmospheric transport (LRAT), which generally occurs by the process known as 

"grasshopping", consisting of successive atmospheric volatilizations and depositions (Blais et al., 2007; Brown and Wania, 

2008; Bengtson-Nash, 2011; Jurado and Dachs, 2008). Ocean currents also contribute to their transport processes, albeit at 

longer timescales since the Antarctic Circumpolar Current acts as a barrier limiting oceanic transport of POPs to the Antarctic 75 

continent (Bengtson-Nash et al., 2010). The “barrier theory” has been questioned by Lozoya et al. (2022) for the South Shetland 

Islands, where the current experiences topographical forcing through the Drake Passage. Finally, another minor transport 

process is biological, mediated by migratory biota (Braune et al., 2005; Wild et al., 2022). In addition, there may be local 

sources of POPs, such as research stations and tourist hotspots, that can contribute to detectable and sometimes elevated 

concentrations of POPs. For example, PCBs have been reported in the vicinity of such local sources (Larsson et al., 1992; 80 

Risebrough et al. 1990; Hale et al., 2008). The low temperatures of Antarctica play an important role in the environmental fate 

of POPs, repressing re-volatilization processes and favoring cold trapping (Wania and Mackay, 1996, Casal et al. 2019), 

limiting any potential degradation, and enhancing bioaccumulation. In this context, several studies show that polar regions act 

as a net sink for many POPs; Antarctica is a vast continent covered in ice surrounded by the southern ocean, hence chemicals 

deposited through LRAT will first deposit in these compartments (Mackay and Wania, 1995; Kallenborn et al., 1998; Dickhut 85 
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et al., 2005; Giogia et al., 2008; Cincinelli et al., 2009; Baek et al., 2011; Cabrerizo et al., 2017; Galbán-Malagón et al., 2012, 

2013a, 2013c; Montone et al., 2013). For example, there is evidence supporting oceanic sequestration by the biological pump 

during blooms burying these compounds on the seafloor (Galbán-Malagón et al., 2013a, 2013c) or by biodegradation due to 

the microbial loop (Galbán-Malagón et al., 2013d). In the context of rapid climate change experienced in polar regions, the 

remobilization of POPs previously trapped for decades in water, ice, and soil is expected (Nizzetto et al., 2010; Ma et al., 2011; 90 

Cabrerizo et al., 2013). The re-emission of POPs to the environment will affect global efforts to moderate human and 

environmental exposure to these toxic compounds (Bigot et al., 2016), therefore, continuous monitoring of POPs levels in 

polar abiotic matrices is necessary to assess to what extent such re-emissions to the atmosphere occur. 

The detection of chemicals in remote regions serves as direct empirical evidence of a compound's persistence and 

potential for long-term environmental transport (Bengston-Nash et al., 2017). POPs were first reported in Antarctic biota in 95 

the 1960s (Sladen et al., 1966; Tatton and Ruzicka, 1967), sparking interest in studying the transport, fate, and levels present 

in different environmental compartments. Through the collation of decades of coordinated monitoring data of POPs in the 

Arctic atmosphere, studies have explored the fate, sources, and long-range transport of POPs in the Northern Hemisphere 

(Hung et al., 2010, 2016; Wu et al., 2010, 2011). A general downward trend of many airborne POPs has been demonstrated in 

the Arctic (Hung et al., 2010, 2016; Kong et al., 2014). However, continuous and consistent atmospheric measurements on 100 

POPs in Antarctica are limited, due to the remote geographical location and complex climatic conditions of this continent, 

which put logistical constraints on any monitoring programme. These knowledge gaps make it difficult to understand the 

fundamental patterns of POPs in this area (Bengston-Nash, 2011), as well as to facilitate systematic comparison with studies 

conducted in the Arctic. 

This paper presents the first systematic review of the most reported POPs in the Antarctic atmosphere, allowing to 105 

summarize the data collected by the different studies and compare the concentrations recorded over the years and at the 

different sampling sites. Such compilation allows to identify temporal trends and calculate the atmospheric half-lives of the 

predominant POPs being monitored to provide insights into expected impacts of environmental remobilization under changing 

Antarctic conditions. 

2 Methods 110 

 

2.1 Compilation of bibliographical data 
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We reviewed all published studies on atmospheric levels of the most reported POP families in the Antarctic 

atmosphere (polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and 115 

dichlorodiphenyltrichloroethane (DDT) and its degradation products) from 1988 to 2021. An exhaustive search was performed 

in the Web of Science and Scopus databases using the words "Persistent Organic Pollutants", "atmospheric" and "Antarctica”, 

including only articles written in English; excluding from the analysis references that do not refer to a good quality assurance 

and quality control during the chemical analysis, or if the levels of field blanks were not reported. A total of 34 publications 

were found, from which we retrieved data on the levels reported, the year in which the samples were collected, and the sampling 120 

sites (Table 1, 2 and 3). We worked exclusively with the levels of the target compounds in the gas phase e, obtained from 

active and passive sampling. Furthermore, compounds scarcely reported in the Antarctic atmosphere, such as polybrominated 

diphenyl ethers (PBDEs), Polycyclic aromatic hydrocarbons (PAHs), per-and poly-fluoroalkyl substances (PFASs) , were 

excluded.  

 125 

2.2 Statistical analysis 

 

To evaluate the differences between the levels, present in West Antarctica and East Antarctica, a non-parametric U-

Mann Whitney variance analysis was conducted. All the analyses were performed using the R statistical software. (R Core 

Team, 2022). To estimate the trend in the change of concentrations, a linear regression was performed between the natural 130 

logarithm of the concentrations for each year studied. 

 

2.3 Estimation of characteristic decreasing times (TD) 

 

Atmospheric half-lives were estimated by deriving the e-folding or characteristic decreasing times (TD), following the 135 

methodology of Galbán-Malagón et al. (2013a). The half-life is defined as the time needed to decrease the atmospheric 

concentration by 35% (e-1) of its initial concentration, which is given by 0.69 TD. First, only the studies that reported all the 

values recorded for each sample were used (Table S1 and S2). These studies were ordered by year of sampling, and their 

respective TD was calculated by least squares adjusting the concentrations to Eq. (1): 

 140 

ln 𝐶!"# = −𝑘$𝑡 + 𝑏                                                                                                                                                                (1) 
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Where kd is the inverse of the e-folding time TD (in years), t is the time in years and b is the independent term. TD was 

not calculated for b-HCH, due to the limited data available. 

3 Results and Discussion 145 

 

3.1 Organochlorine Pesticides (OCPs) 

 

OCPs represent most of the POPs listed in the Stockholm Convention. These organic compounds have been widely 

produced and commercialized since the 1950s for agricultural use and vector control (UNECE, 1998; UNEP, 2006). The 150 

application of technical HCH in agriculture has been banned since the early 1980s, while DDT, Lindane (g-HCH), and HCB 

were banned in the 1990s (UNECE, 1998; UNEP, 2001). OCPs were first reported in Antarctic marine biota in the late 60’s 

by Sladen et al. (1966) and Taton & Ruzicka (1967). To date, their levels in different environmental compartments continue 

to be reported (e.g., Vergara et al., 2019; Wu et al., 2020; Krasnobaev et al., 2020; Xie et al., 2022). 

 155 

3.1.1 Atmospheric levels of organochlorine pesticides (OCPs) 

 

In the Arctic atmosphere, HCB concentrations are the highest of any OCPs (De March et al., 1998). Similarly, 

atmospheric concentrations of HCB reported from the Antarctic have been observed to be higher than the other target OCPs 

(Table 1 and 2), being the most frequently detected and abundant POP in the Antarctic atmosphere (Kallenborn et al., 2013; 160 

Wang et al., 2018; Hao et al., 2019; Wu et al., 2020). Temporal patterns of atmospheric HCB concentrations in the Antarctic 

show significant inter-annual fluctuations with low but significant decreasing trende (p<0.001, See table 4)), with a higher 

variability   over time specially in the last decade (Fig. 1A). A clear decrease in concentrations is shown until about 2010, 

thereafter a large variability of data is shown where the trend seems to be changing, however there is a lack of sufficient data 

to be able to confirm this trend. The maximum values were reported by Hao et al. (2019), during the 2012-2018 sampling 165 

period on King George Island (Table 1). Such increases in HCB gaseous levels could be mainly associated with re-emission 

from environmental surfaces (water, soil, and snow) shifting from a reservoir to a secondary source of this compound on the 

Antarctic continent. HCB is the most persistent OCPs chemical assessed here, as suggested before (Galbán-Malagón et al. 

2013). In addition, there may still be an important influence of transport from current primary sources (i.e., combustion and 

thermal processes) on a global scale and unintentional formation during thermal processing or combustion of chlorine-170 
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containing materials (Barber et al., 2005). The trend shown in Fig 1A points that concentrations of HCB in the Antarctic 

atmosphere may be regionally dependent, and maybe highly in pace to the climate/environmental change processes occurring 

in different Antarctic regions.  

The reported atmospheric concentrations of SHCHs in Antarctica from 1980-2019 show a decreasing trend over time 

(Table 1; Fig. 1 B and C), with significant differences in inter-annual levels (P<0.05). The maximum concentration of HCHs 175 

was 170 pg/m3, reported in 1980-1982 (Tanabe et al., 1982; 1983), and progressively lower concentrations reaching values 

under detection levels and below 1 pg/m3 are reported from 2003 to 2019 (Gambaro et al., 2005; Cincinelli et al., 2009; Baek 

et al., 2011; Galbán-Malagón et al., 2013b; Kallenborn et al., 2013; Pozo et al., 2017; Cabrerizo et al., 2017; Wu et al., 2020; 

Bigot et al., 2016; Hao et al., 2019). The g-HCH isomer was found at high concentrations in Antarctica between 1989 and 

1990, with a maximum atmospheric concentration of 118 pg/m3 in 1988 at Ross Island, by Larson et al. (1992) (Fig. 1C, Table 180 

S1). Decreasing concentrations are then reported for g-HCH in 2000, which is unsurprising if fresh sources have been removed, 

given the lower volatility and higher water solubility of this isomer. On the other hand, the a-HCH isomer, is found to increase 

since 2006 (Baek et al., 2011; Galbán-Malagón et al., 2013b; Hao et al., 2019), compared to the concentrations recorded during 

2001-2004 by Dickhut et al. (2005) and Cincinelli et al. (2009).  

Published studies reporting gaseous levels for DDT and their isomers from 1988-2018 were lower than the rest of the 185 

target OCPs, and like HCHs, the DDTs showed a decreasing trend over the years (Table 2, Fig. 2), with significant inter-annual 

differences (p<0.05) for compounds 4,4'-DDT, 4,4'-DDE, 2,4'-DDT and 2,2'-DDE, and non-significant annual differences 

(p>0.05) for compounds 4,4'-DDD and 2,4'-DDD.  

To date, atmospheric concentrations of HCB, a-HCH, b-HCH, and g-HCH isomers have been studied over much of 

the Antarctic continent, both in West Antarctica (Kallenborn et al., 1998; Montone et al., 2005; Dickhut et al., 2005; Baek et 190 

al., 2011; Galbán-Malagón et al., 2013c; Khairy et al., 2016; Hao et al., 2019), and in East Antarctica (Tanabe et al., 1982, 

1983; Lakaschus et al., 2002; Larsson et al., 1992; Jantunen et al., 2004; Bidleman et al., 1993; Gambaro et al., 2005; Cincinelli 

et al., 2009; Kallenborn et al., 2013; Pozo et al., 2017; Cabrerizo et al., 2017; Wu et al., 2020; Bigot et al., 2016). The detected 

concentrations of HCB and a-HCHs indicate significant spatial differences (P<0.05), with higher atmospheric concentrations 

in West Antarctica than in East Antarctica (Table S.4). The g-HCH isomer did not show spatial differences between the two 195 

zones (P>0.05) (Table S.4). The U-Mann Whitney variance analysis was not performed for the b-HCH isomer, because all 

levels reported in East Antarctica were below the detection limit.  

3.1.2. Atmospheric half-lives of organochlorine pesticides (OCPs)  

 

The estimated Atmospheric half-lives for OCPs were estimated for the compounds that showed a significant trend in 200 

relation to the sampling time (p<0.05 or lower). The estimated half lives decreased in the following order trend decreased in 
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the following order: 4,4'-DDT (17.2 years) > 2,4'-DDT (14.4 years) > α-HCH (14.3years) > HCB (14.0 years) > γ-HCH (10.1 

years) (more details are given in Table 4). The higher atmospheric half-life values estimated in this study for DDTs isomers, 

compared to the values estimated for HCHs and HCB might be related to the years in which these compounds were banned, 

since DDTs were banned approximately 10 years after HCHs isomers. It may also be due to continuous production and use of 205 

DDTs in some parts of the world due to exemptions to the Stockholm Convention. The estimated values are higher than the 

atmospheric half-lives reported by other authors, such as Atkinson (1986); Howard (1991); Mortimer & Connel (1995); and 

Kelly et al. (1994), whose estimated and published values do not exceed one year. However, the methodologies employed 

differ from the one used in the present study, where Atkinson (1986); Howard (1991); and Mortimer & Connel (1995), were 

based on rate constant of gas-phase reaction with OH radical for trichlorobiphenyls, while Kelly et al. (1994), were based on 210 

atmospheric transformation lifetime. On the other hand, if we compare studies with similar methodology, the study by Venier 

& Hites (2010) in Great Lakes shows that the half-life estimates for α-HCH and γ-HCH are in a similar range to our estimates, 

while the one obtained for 4,4'-DDDT is slightly lower. (Fig 4a) Likewise, according to the half-life estimates by Wong et al. 

(2021), HCB shows higher values than those reported by us, but they report similar values than ours for α-HCH, γ-HCH, 2,4'-

DDDT and 4,4'-DDDT (Fig. 4a). 215 

Polar areas are often considered to be a net sink for POPs. Studies have documented that α-HCH and γ-HCH 

exchanges preferentially from air to water, with this diffusion being the predominant atmospheric deposition mechanism 

(Galbán-Malagón et al., 2013a,c; Dickhut et al., 2005; Cincinelli et al., 2009; Jantunen et al., 2004; Lohmann et al., 2009; Xie 

et al., 2011; Zhang et al., 2012; Huang et al., 2013). Once deposited onto surface waters, they are susceptible to sequestration 

by the biological pump (Galbán-Malagón et al., 2013a,c), as well as to degradation driven by hydrolysis and biodegradation 220 

to a minor extent (Harner et al., 2000; Helm et al., 2002; Galbán-Malagón et al., 2013c). These processes minimize the 

opportunity for re-entry to the atmosphere through volatilization. The lower half-lives values for HCHs may be related to their 

lower Henry’s law constant when compared to other POPs. On the contrary, to our knowledge, no degradation processes have 

been documented for HCB in surface water and furthermore, conditions close to air-water equilibrium have been reported for 

this compound (Cincinelli et al., 2009; Galbán-Malagón et al., 2013c). Similarly, DDTs are more hydrophobic with much 225 

higher KOW values than HCHs (Table S3), so they are rapidly removed from seawater as particles sink (Lohmann et al., 2007). 

Thus, it is possible that the high half-lives estimated for DDTs and their metabolites DDD and DDE may be due to unknown 

current primary and secondary sources (Voldner and Li, 1995; Channa et al., 2012, Li et al., 2020).  

 

3.2 Polychlorinated Biphenyls (PCBs) 230 
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Like OCPs, polychlorinated biphenyls (PCBs) were among the first groups of POPs to be listed under the Stockholm 

Convention and are characterized by their high chemical stability. Prior to their regulatory control in the 1970s, commercial 

mixtures of PCBs were widely used in many industrial applications, such as fluids in transformers and capacitors, hydraulic 

fluids, lubricating oils, and as additives in pesticides, inks and paints, flame retardants, plasticizers, sealants for wood and 235 

cement surfaces, among others (Kennish, 1997; FAO/UNEP 1992). 

PCBs were first reported in Antarctica in the 1960s and 1970s (Risebrough et al., 1968, 1976), and since then, 

numerous studies have reported their levels in air, water, sediments, snow, and biota on the Antarctic continent (e.g., 

Kallenborn et al., 1998; Fuoco et al., 1995; Gupta et al., 1996; Weber et al., 2003; Kim et al., 2015). Here, we selected 7 

indicator PCB congeners (28, 52, 101, 118, 138, 153 and 180) considering that they are the most reported PCB congeners 240 

worldwide, including Antarctica.  

 

3.2.1 Atmospheric levels of polychlorinated biphenyls (PCBs) 

 

The atmospheric concentrations of S7PCBs reported by the reviewed studies were below those of the target OCPs 245 

(Table 3). Overall, the levels of S7PCBs reported from 1988 to 2018 showed a decreasing trend over time (Table 3 and 4, Fig. 

3), with significant differences in their levels (p<0.05). Congeners 28 and 52 recorded the highest concentrations on King 

George Island, with values of 69.9 pg/m3 in 1995, and 33.2 pg/m3 in 1996, reported by Montone et al. (2005; 2003) (Fig. 3 A 

and B, Table S2). In contrast, the lowest concentrations of all target PCBs were reported for congener 180, ranging from not 

detected (n.d) to 3.4 pg/m3 (Fig. 3G, Table S2). 250 

Like OCPs, atmospheric concentrations of the seven PCB congeners have been reported over most of the Antarctic 

zone, covering the West Antarctic zone (Montone et al., 2003; 2005; Kallenborn et al., 1998; Baek et al., 2011; Galbán-

Malagón et al., 2013c; Li et al., 2012; Khairy et al., 2016; Wang et al., 2017; Hao et al., 2019; Wu et al., 2020) and eastern 

Antarctica (Larson et al., 1992; Gambaro et al., 2005; Kallenborn et al., 2013; Pozo et al., 2017; Cabrerizo et al., 2017). 

Significant spatial differences (p<0.05) were observed in the atmospheric concentrations of congeners 28, 52, 101 and 138, 255 

with higher concentrations in West Antarctica than East Antarctica, while there was no significant difference among sites for 

congeners 101, 118 and 153 (p>0.05). These differences are consistent with the different atmospheric patterns over the 

Antarctic peninsula regions, with entrance of air-masses from the north, and more permanent wet deposition events by snow 

and rain, increasing the regional concentrations of POPs (Casal et al. 2019, Casas et al. 2021). 

 260 
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3.2.2. Atmospheric half-lives of polychlorinated biphenyls (PCBs) 

 

The estimated atmospheric half-lives for target PCBs decreased in the following order: PCB 153 (7.6 years) > PCB 

138 (6.5 years) > PCB 101 (4.7 years) > PCB 180 (4.6 years) > PCB 28 (3.9 years) > PCB 52 (3.7 years) > PCB 118 (3.6 

years) (Table 4). The estimated half-lives were directly proportional to the congener’s Henry's law constant (HLC) values. 265 

(Table S3). Studies by Atkinson (1986) and Sinkkonen & Paasivirta (2000) reported half-lives lower than those estimated in 

the present work, where none of the estimated half-lives for these compounds exceeded 1 year. However, the methodology of 

both studies differs from that of the present study, calculating the half-lives of the compounds by means of the rate constant of 

gas-phase reaction with the OH. Regarding studies using a similar methodology, the atmospheric half-lives estimated by Venier 

& Hites (2010) in the Great Lakes (United States and Canada) and by Wong et al. (2021) in the Arctic were higher relative to 270 

our results for PCBs 28, 52, 101 and 118. They were in a similar range for PCBs 138, 153 and 180 (Fig. 4b). 

Studies have documented that the biological pump is highly efficient for PCBs with high hydrophobicity, i.e., high 

KOW values (Table S3) (Dachs et al., 2002, Galbán-Malagón et al., 2012; Galbán-Malagón et al., 2013a), thus reducing their 

revolatilization. The estimated atmospheric half-lives, however, do not reflect lower values for the compounds with higher 

KOW (e.g. PCB 138, 153 and 180), so other factors may be influencing the high estimated half-lives of the more hydrophobic 275 

PCBs. One of these factors could be the presence of local sources of certain PCB congeners, since it has been reported that 

near the research stations higher PCB concentrations are monitored, compared to sites farther away from these stations, 

specifically PCB congeners 28, 52, 56 and 101 (Li et al., 2012b; Montone et al., 2003). Furthermore, remobilization of PCBs 

stored in soils and ice (Cabrerizo et al. 2013, Casal et al. 2019) could be another factor modulating the surface, and thus 

atmospheric, concentrations of POPs. 280 

 

3.3 Influence of global climate change on the dynamics of persistent organic pollutants (POPs) in the Antarctic 

continent. 

Over the past decades, global climate changes and the effects of increasing temperatures have been observed in the northern 

and southern hemispheres (Hung et al., 2022). Increases in ambient temperature can influence physical and chemical processes 285 

and ecosystem changes. For example, it has been reported that increasing ambient temperature will affect the dynamics and 

exchange of POPs between different environmental matrices. Some studies have exposed the relationship between climate 

change and POPs concentrations (Vorkamp et al., 2022; Potapowicz et al., 2018), describing that POPs are temporarily stored 

in sediments/soils and can be released into the environment with thawing permafrost (Potapowicz et al., 2018) and that an 

increase in POPs availability following iceberg calving (NIC, 2014) or increased soil remobilization by up to 45% (Cabrerizo 290 
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et al., 2013). In addition, several studies show that seawater, snow, and presumably Antarctic soil are becoming critical 

secondary sources for POP remobilization (Cabrerizo et al., 2012, 2013; Klanová et al., 2008; Casal et al., 2019). 

On the other hand, the mean annual air temperature along the western Antarctic Peninsula has been reported to have increased 

by as much as 3.4 °C. In addition, the mid-winter temperature increased by 6.0 °C over the past 50 years, making the region 

one of the most critically affected by climate warming (Vaughan et al., 2003; Turner et al., 2005). However, evidence from 295 

field sampling indicated that, to date, there is no relationship between atmospheric ambient temperature and atmospheric 

concentrations of HCH and HCB in East Antarctica (Bengtson-Nash, 2017). On the other hand, increasing ambient temperature 

leads to decreased snow cover, nutrient runoff from land to sea, and increased bioavailability of nutrients on land, causing an 

increase in primary producers on land and sea (Wasley et al., 2006). In this context, it has been demonstrated in aquatic systems 

that an increase in primary productivity is vital in the sedimentation processes of POPs from the surface to the aquatic bottom 300 

through the biological pump (Larson et al., 2000; Galbán-Malagón et al., 2018), this process contributes mainly to the removal 

of POPs from the environment, despite the adverse effects of an increase in primary productivity in ecosystems (e.g., increase 

in organic matter). Thus, global warming in Antarctica not only implies a temperature change but also leads to multiple 

processes that can affect the biogeochemical dynamics of POPs, which plays an essential role in the environmental fate of 

POPs. Because depending on the future effects of climate change, Antarctica can act as a secondary source of POPs through 305 

the re-volatilization of these compounds or as a sink, contributing to the decrease of their environmental levels. Therefore, 

future exploration of the impact of climate change is necessary and establishes the importance of establishing long-term 

monitoring networks. 

 

3.4 Potential sources of bias 310 

 

As presented here, several factors can be considered as sources of bias from historical data analysis. First, in the time frame of 

this study (1980-2021), analytical instrumentation and laboratory techniques exhibited dramatic change, particularly with the 

advent of advanced mass spectrometry (MS) over electron capture detection (ECD) or novel calibration techniques based on 

isotopically labeled standards ( Azcune et al., 2022). Therefore, recent data are generated by more sophisticated techniques 315 

and modern laboratory QA/QC criteria, which need to be included in data reported before 2000. On the other hand, we also 

included studies using active and passive sampling, but no major differences in the values obtained were observed (See Tables 

1 and 2). 

The published information from Antarctica is reduced to a group of individual experiences in different geographical locations 

of international teams working in the field under different conditions and levels of competence that are difficult to obtain and 320 

analyze. One might expect that studies that show a strong track record in Antarctic research, reporting POP levels over a time 
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series, might have greater validity due to constancy and consistency in both sampling and the types of analyses used (e.g., 

Larson et al., 1992; Baek et al., 2011; Hao et al., 2019). 

In summary, the source of bias, related to the technological advancement of the analyses of the collected samples, could have 

relevance in the observed variability of the historical trends of HCB and HCH (see Fig. 1 A to C). In these cases, it is suggested 325 

to continue with dedicated monitoring of these POPs in the coming years to obtain robust observations and conclusions on the 

degradation of POPs in the Antarctic atmosphere. 

 

4 Conclusion 

 330 

In the present review, a clear trend of decreasing concentrations of PCBs and most targeted OCPs in the Antarctic atmosphere 

from 1980 to 2018 is documented. In response to the hypothesis raised historically about the decrease in atmospheric levels of 

historical POPs (Vecchiato et al., 2015). However, it opens the door to study new families of pollutants for which there is 

already analytical capacity not available in previous decades. In the case of HCH isomers, DDT and PCB congeners, high 

atmospheric concentrations were reported during 1990-1999 decade but these compounds were highly restricted since 1970s. 335 

After that date, a strong decrease was observed in the Antarctic atmosphere, which shows that the Stockholm Convention ban 

on POPs did have the intended impact on the (atmospheric) concentrations over time. However, these compounds are still 

ubiquitous in the Antarctic atmosphere with atmospheric half-lives of more than 3 years. On the other hand, the revised 

atmospheric levels of HCB show a decrease in the decade of its prohibition (1990), however, from the year 2000 onwards, 

they show strong fluctuations in literature, with values even higher than those reported in 1990. It is noteworthy to take into 340 

account, that a decrease of the atmospheric concentrations does not imply neither a decrease of the total POPs in Antactica, an 

issue that will require future work. In fact, a re-emission of HCB and other POPs from environmental surfaces, such as water, 

soil, and snow, product of its high stability in the environment, potential sources of bias. Studies to date in Antarctica do not 

allow conclusions to be drawn about the influence of temperature on the environmental fate of POPs on the Antarctic continent. 

This is due to the lack of consistent time series data as historically conducted in the Arctic. Moreover, our results point to the 345 

importance of periodic monitoring and the need to establish monitoring networks with continuous sampling campaigns, not 

only with aim to monitor the legacy POPs, as well as to identify new pollutants that have the potential to reach Antarctica (e.g., 

new flame retardants, per- and polyfluoroalkyl substances (PFAS), and polycyclic aromatic hydrocarbons (PAHs), among 

others). There is increasing evidence of the presence of emerging compounds in different environmental matrices in Antarctica, 

however, the current surveillance of atmospheric pollutants is related to specific research groups, instead of coordinated efforts 350 
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between countries with Antarctic presence, where continuous monitoring networks could be generated with the inclusion of 

various persistent toxic chemicals, as analogous to the efforts done by the Arctic Monitoring and Assessment Program 

(AMAP), or the Integrated Atmospheric Deposition Network (IADN) in the Great Lakes. 
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Table 1. HCB and HCHs levels (pg/m-3) in Antarctic atmosphere since 1980 to present.	∑n indicates the 
number of isomers included in the study.	

Sampling area Type of 

sampling 

Year HCB a-HCH y-HCH ∑HCHs ∑

n 

Reference 

Southern ocean Active 1980-1981       90-170   Tanabe et al., 1982 

Southern ocean Active 1981-1982       44-170   Tanae et al., 1983 

Cape town and Newmayer 

Station 

Active 1999   0.36 0.15     Lakaschus et al., 2002 

Ross Island Passive 1988 - 

1999 

    25.8 (0.5 - 

118) 

    Larson et al., 1992 

East Antarctica Passive 1990 62.6 (40-78) 3.2 (2.8-3.6) 2.4 (1.1-5.6) 5.7 2 Bidleman et al., 1993 

Signy Island Active 1994 - 

1995 

  2.8 21.8 26.97 3 Kallenborn et al., 1998 

 East Antarctica Passive 1997 - 

1998 

  1.06 (0.81 - 

1.4) 

      Jantunen et al., 2004 

Terranova bay Passive 1993 21 (n.d - 28)     13 (5 - 

20.0) 

3 Kallenborn et al., 1998 

Ross Island Active 1995 (<0.6 - 25.3)     3.9-32.5  2 Montone et al., 2005 

west of the Antarctic Peninsula 

and southwest of Adelaide 

Island  

Active 2001 - 

2002 

19.4 (<5 - 32.1)  0.3 (<0.05-

0.52) 

0.755 

(<0.02-2.98) 

    Duckhut et al. 2005 

Terra Nova Bay  Active 2003-2004 11.4 (6.0 - 20)     0.8 (0.3 - 

1.2) 

2 Gambaro et al., 2005 

Terra Nova Bay Active 2003-2004 11.4 (5.93 - 

20.4) 

    0.22 (0.1 

- 0.35) 

2 Cincinelli et al., 2009 

Ny-Ålesund, King George 

Island, and Chuuk 

Passive 2005-2009           Baek et al., 2011 

South Scotia Active 2008 8.1 (2.18 -

15.82) 

1.7(0.06-5.84) 4.6 (1.5-7.1)     Galbán-Malagón et a., 2013b 

Wedell Active 2009 19.5 (2.4 - 

30.1) 

0.16 (0.05-

2.09) 

0.84 (0.1-

1.87) 

    Galbán-Malagón et a., 2013b 

Bransfield  sea Active 2009 16.7 (3.3 - 

34.24) 

0.14 (0.04-

0.46) 

1.15 (0.2-3)     Galbán-Malagón et a., 2013b 

Bellingshausen  Active 2009 42.9 (27.31 - 

49.71) 

0.26 (0.22-

0.16) 

0.14 (0.07-

0.19) 

    Galbán-Malagón et a., 2013b 

Palmer station Active 2010 34 (26.2 – 

37.7) 

0.81 – 1.68 0.87 – 2.31   Khairy et al., 2016 

Station troll / Queen Maud Land  Active 2010 22.9         Kallenborn et al. 2013 
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Ross Sea Passive 2010-2011 22.8 (0.8 - 50) 0.5 (n.d-0.5) n.d 0.5 (n.d-

0.5) 

2 Pozo et al., 2017 

Antarctic Plateau  Active 2011 (0.67-2.7)   BD-2.7     Cabrerizo et al. 2016 

Antarctic marginal seas  Active 2013-2014 2.6 (0.081 - 10)     (n.d - 

6.8) 

3 Wu et al., 2020 

Southern Ocean between 

Australia and Antarctica  

Active 2014 (<22 - 35) <0.13-1.1 <0.70-4.3 n.d - 

3.65 

3 Bigot et al., 2016 

King George Island  Passive 2012-2018 163 (99.2 - 

252) 

1.4 (0.5-13.6) 0.1-7.9 0.7 - 

22.3 

4 Hao et al., 2019 
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Table 2. PCBs levels (pg/m-3) in Antarctic atmosphere since 1980 to present. ∑n indicates the number 
of congeners included in the study.	

 
Sampling area Type of 

sampling 

Year ∑PCBs ∑n Reference 

Ross Island Passive 1988 - 1990 15.2 6 Larson et al. 1992 

King George Island  Active 1993 - 1994 20.8 (12.09 - 42.8)  10 Montone et al., 2001 

Signy Island Active 1994 - 1995 (0.01-17.2) 22 Kallenborn et al., 1998 

Ross Island Active 1995 62.4 11 Montone et al., 2005 

King George Island  Active 1996-1996 37.4 (12.1 - 92.6)  10 Montone et al., 2003 

Terra Nova Bay  Active 2003-2004 1.06 (0.61-1.78) 61 Gambaro et al., 2005 

Ny-Ålesund, King George Island, 

and Chuuk 

Passive 2005-2009 60.3(22.8 - 87.1) 11 Baek et al., 2011 

Ny-Ålesund, King George Island, 

and Chuuk 

Passive 2005-2009 19.8 (11.1-31.9) 205 Baek et al., 2011 

ICEPOS Active 2005 16.84 (7.12- 25.65)  25 Galbán-Malagón et al. 2013c 

South Scotia sea Active 2008 45.13 (6.2 - 78.9)  25 Galbán-Malagón et al. 2013c 

Antarctic peninsula Active 2009 12.13 (1.8- 38.1)  25 Galbán-Malagón et al. 2013c 

Polish beach Active 2009 (2.1 - 3.1) 25 Galbán-Malagón et al. 2013c 

Livingston Island Active 2009 7.23 (3.5 12.9)  25 Galbán-Malagón et al. 2013c 

King George Island  Passive 2009 - 2010 1.142 7 Li et al 2012 

King George Island  Passive 2009 - 2010 36.837 19 Li et al 2012 

King George Island, Antarctica.  Passive 2009 - 2010 4.34 7 Li et al. 2012/2 

Station troll / Queen Maud Land  Active 2010 0.5 32 Kallenborn et al., 2013 

Palmer station Active 2010 12 29 Khairy et al., 2016 

Ross Sea Passive 2010-2011 0.46 (0.14-1.13) 7 Pozo et al. 2017 

Antarctic Plateau  Active 2011 (0.8-27) 26 Cabrerizo et al. 2016 

King George Island  Active 2011-2014 5.39 (0.91-35.9)  7 Wang et al. 2017 

King George Island  Active 2011-2014 5.87- 72.7 (26.1) 20 Wang et al. 2017 

King George Island  Pasive 2010-2018 10.4 (1.5 - 29.7)  19 Hao et al., 2019 

Antarctic marginal seas  Active 2013-2014 1.1 (nd-6.7)  14 Wu et al. 2020 

King George Island and Ardley 

Island 

Passive   0.078 (nd - 0.137) 6 Wang et al. 2015 
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Table 3. Estimated atmospheric decrementing times of examined compounds POPs. 

Compounds TD (Years) 
95% Confident  

Interval 
R2 p-value Equation 

HCB 14.0 10.6-20.7 12.03 <0,0001 LnCg = -0.04931*year + 100.2 

a-HCH 14.3 12.4-17.0 32.55 <0,0001 LnCg = -0.04817*year + 96.17 

y-HCH 10.1 8.6-12.3 44.63 <0,0001 LnCg = -0.06837*year + 136.9 

4,4´ DDT 17.2 11.8-31.7 23.54 <0,0001 LnCg = -0.04015*year + 79.50 

2,4 DDT 14.4 9.8-27.3 37.55 <0.001 LnCg = -0.04794*year + 94.99 

2,4 DDE 17.6 9.2-232 15.44 <0.05 LnCg = -0.03916*year + 77.93 

PCB 28 3.9 3.2-5.2 43.08 <0,0001 LnCg = -0.1748*year + 351.2 

PCB 52 3.7 3.2-4.3 63.53 <0,0001 LnCg = -0.1887*year + 378.7 

PCB 101 4.7 4.0-5.6 67.42 <0,0001 LnCg = -0.1480*year + 295.8 

PCB 118 3.6 3.0-4.3 55.91 <0,0001 LnCg = -0.1930*year + 385.8 

PCB 138 6.5 5.3-8.3 40.7 <0,0001 LnCg = -0.1066*year + 212.7 

PCB 153 7.6 6.0-10.4 31.59 <0,0001 LnCg = -0.09071*year + 181.2 

PCB 180 4.6 3.3-8.0 24.64 <0,0001 LnCg = -0.1486*year + 296.2 
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Figure 1. Atmospheric levels (pg/m3) of HCB (A), a-HCH (B), b-HCH (C) and g-HCH (D), over time. 
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Figure 2. Atmospheric levels (pg/m3) of 2,4’-DDT (A), 4,4´-DDT (B), 2,4’- DDE (C), over time. 
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Figure 3. Atmospheric levels (pg/m3) of PCB-28 (A), PCB-52 (B), PCB-101 (C), PCB-118 (D), PCB-138 (E), PCB-153 (F) 

and PCB-180 (G), over time. 
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Figure 4. Comparison among the estimated atmospheric residence time obtained in the present work compared with similar 

estimations from the Great Lakes and the Arctic for a) HCB, A-HCH, DDX, and b) PCBs 725 
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