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The study of microbial communities or microbiotas in animals and environments is

important because of their impact in a broad range of industrial applications, diseases

and ecological roles. High throughput sequencing (HTS) is the best strategy to

characterize microbial composition and function. Microbial profiles can be obtained

either by shotgun sequencing of genomes, or through amplicon sequencing of target

genes (e.g., 16S rRNA for bacteria and ITS for fungi). Here, we compared both HTS

approaches at assessing taxonomic and functional diversity of bacterial and fungal

communities during vermicomposting of white grape marc. We applied specific HTS

workflows to the same 12 microcosms, with and without earthworms, sampled at

two distinct phases of the vermicomposting process occurring at 21 and 63 days.

Metataxonomic profiles were inferred in DADA2, with bacterial metabolic pathways

predicted via PICRUSt2. Metagenomic taxonomic profiles were inferred in PathoScope,

while bacterial functional profiles were inferred in Humann2. Microbial profiles inferred by

metagenomics and metataxonomics showed similarities and differences in composition,

structure, and metabolic function at different taxonomic levels. Microbial composition

and abundance estimated by both HTS approaches agreed reasonably well at the

phylum level, but larger discrepancies were observed at lower taxonomic ranks. Shotgun

HTS identified ∼1.8 times more bacterial genera than 16S rRNA HTS, while ITS HTS

identified two times more fungal genera than shotgun HTS. This is mainly a consequence

of the difference in resolution and reference richness between amplicon and genome

sequencing approaches and databases, respectively. Our study also revealed great

differences and even opposite trends in alpha- and beta-diversity between amplicon

and shotgun HTS. Interestingly, amplicon PICRUSt2-imputed functional repertoires

overlapped ∼50% with shotgun Humann2 profiles. Finally, both approaches indicated

that although bacteria and fungi are the main drivers of biochemical decomposition,

earthworms also play a key role in plant vermicomposting. In summary, our study
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highlights the strengths and weaknesses of metagenomics and metataxonomics and

provides new insights on the vermicomposting of white grape marc. Since both

approaches may target different biological aspects of the communities, combining them

will provide a better understanding of the microbiotas under study.

Keywords: earthworm, grape marc, ITS, metagenomics, metataxonomics, microbiome, vermicompost, 16S rRNA

INTRODUCTION

High throughput sequencing (HTS) has revolutionized our
ability to survey microbial communities through DNA
sequencing. Currently, there are two main HTS strategies
for the analysis of microbial communities on Next-Generation
Sequencing (NGS) platforms: targeted amplicon sequencing and
shotgun metagenomics. Targeted amplicon sequencing (e.g.,
Bybee et al., 2011) or metataxonomics (as defined in Marchesi
and Ravel, 2015) allows for efficiently running large volumes of
samples at relatively low costs compared to traditional Sanger
sequencing of PCR products. Specific gene regions have been
effectively developed to survey various members of the microbial
community. The 16S ribosomal RNA (rRNA) gene has been
effectively used to characterize bacterial diversity (Klindworth
et al., 2013; Bowman and Ducklow, 2015) and predict its
metabolic function by imputation (Langille et al., 2013), in no
small part due to extensive reference databases that have been
collected over the past 25 years (e.g., Quast et al., 2013; Cole
et al., 2014). Similarly, the internal transcribed spacer (ITS)
region of the rRNA operon for fungi (Nilsson et al., 2019a) is
an effective DNA barcode (Schoch et al., 2012) to characterize
fungal diversity also due to an extensive database of reference
sequences (Merget et al., 2012; Santamaria et al., 2018; Nilsson
et al., 2019b). However, despite their widespread use in microbial
diversity studies, these two target genes are not as effective at
classifying sequences at the species and strain levels (Vetrovsky
et al., 2016; Johnson et al., 2019; Strube, 2021).

Shotgun metagenomics is an alternative HTS approach that
does not rely on the PCR amplification of a single gene of
the bacterial or fungal genome, but in the direct sequencing
of DNA isolated from the whole microbial community or
microbiota (prokaryotes, eukaryotes and viruses). This approach
generates small DNA fragments or reads which are then sorted
and classified bioinformatically (e.g., Hong et al., 2014; Wood
et al., 2019) by mapping reads to reference genomes (reviewed
in Miossec et al., 2020). This metagenomic approach has the
advantages of broader taxonomic range and microbial diversity
capacity, greater resolution [often species and even strains (e.g.,
Francis et al., 2013)], and greater potential for functional insights
due to the mapping of sequenced reads across the entire genome.

Abbreviations: ASV, Amplicon sequence variant; CT, Control; DNA,

Deoxyribonucleic acid; EW, Earthworm; HTS, High-throughput sequencing;

ITS, Internal transcribed spacer; KEGG, Kyoto encyclopedia of genes and

genomes; KO, KEGG ortholog; LM, Linear models; MIC, Microcosm; MG,

metagenomics; NGS, Next-generation sequencing; OTU, Operational taxonomic

unit; PCA, Principal component analysis; PCoA, Principal coordinate analysis;

PCR, Polymerase chain reaction; rRNA, Ribosomal ribonucleic acid; WMS,Whole

metagenome sequencing.

The drawbacks of the metagenomic approach are that it is
highly dependent on the reference database used (Nasko et al.,
2018; Breitwieser et al., 2019)—unless computationally intense
metagenomic assembly-based approaches are used, the cost per
sample is substantially higher than for metataxonomics, and
requires sophisticated computational methods and powerful
hardware resources for their analysis (Gevers et al., 2012;
Miossec et al., 2017). Nevertheless, both metataxononomic and
metagenomic approaches perform well compared to traditional
methods of microbial culture identification (Hilton et al., 2016)

and allow for a robust characterization of microbiome diversity

(Miossec et al., 2020).
Given that both metataxonomics and metagenomics provide

useful and often complementary data and insights, we applied

both approaches to characterize the diversity of the bacterial

and fungal communities associated with vermicomposting.
Vermicomposting takes advantage of the synergistic effects of

worms and microorganisms (bacteria and fungi) to decompose

organic waste (Ali et al., 2015). At the same time, worms can

enrich the microbial communities of the resulting compost,

enhancing subsequent production as a richer form of organic
fertilizer, thus offering a sustainable alternative to chemicals while
converting waste products into fertilizer. Our study specifically
focuses on vermicomposting in viticulture. Vermicomposting of
grape marc (the solid portion of the grape must) can effectively
produce a high-quality organic fertilizer that is nutrient-rich,
microbially diverse, and a source of bioactive polyphenols
(Dominguez et al., 2014). It also reduces environmentally
hazardous waste (due to low pH and high polyphenol content)
from the wine making process. Our previous work on this
system used white grape marc (Vitis vinifera L. cv. Albariño)
from wineries in the northwest part of Spain (Galicia). Using
a 16S rRNA metataxonomic approach, we showed increasing
bacterial diversity (alpha and beta) over time (out to 91 days with
significant changes after 7 days) (Kolbe et al., 2019).

This new study uses our white grape marc system (although,
from a different vineyard) to test for changes in diversity over
time (21 and 63 days) with and without (control) earthworms.
We use metataxonomic approaches to characterize both bacterial
and fungal diversity as well as shotgun metagenomic sequencing
for broad characterization of the vermicomposting microbiome.
These different sequencing strategies provide us with a detailed
understanding of changes in microbial communities over
time during vermicomposting compared to composting (no
earthworms). Moreover, HTS of vermicompost has mainly
focused on 16S rRNA metataxonomics; but now that ITS
(e.g., Dominguez et al., 2021) and shotgun (Huang et al.,
2020) sequencing are starting to be used to characterize the
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vermicompost microbiota, comparing the outcomes of the
specific HTS strategies used here will guide further research on
this topic.

MATERIALS AND METHODS

Vermicomposting Microcosm Design and
Sampling
White grape marc (Vitis vinifera L. cv. Albariño) was provided by
Terras Gauda, a winery located in southernGalicia (northwestern
Spain). Grape marc was stored at 4◦C until needed and
turned and moistened with water for 2 days prior to the
vermicomposting trial. Microcosm reactors were constructed
with PVC as cylinders with a 30 cm diameter and 70 cm height.
Each microcosm was initiated with a base layer of vermicompost
from grape marc that acted as a bed for the earthworms. Three
microcosms were inoculated with 400 earthworms (EW) (Eisenia
andrei) and three were left without earthworms (control—CT).
Fresh grape marc (2 kg fresh weight) was added weekly with a
mesh (5mm pore size) between weekly grape marc additions.
The mesh allowed the earthworms to move freely throughout
the cylinder but prevented fresh material from being mixed with
earthworm-processedmaterial. All of the reactors were kept in an
air-conditioned room with temperature set to 20◦C throughout
the duration of the trial.

Vermicomposting involves an active phase, where earthworm
activity is critical, and a maturation phase, which takes
place once worms leave the substrate, where microorganisms
are the impactful community members. The active phase
comprises all the processes associated with the passage of
substrate through the earthworm gut (GAPs: gut-associated
processes). During this phase, earthworm digestion reduces
microbial biomass and activity and modifies the structure and
function of the microbial communities. In the maturation phase,
earthworm excreted materials or casts start aging, while their
associated microbial communities experience a turnover (i.e.,
cast-associated processes, CAPs). Our microcosms resembled a
time profile consisting of layers of increasing age where time 21
days represents the active phase of vermicomposting (GAP) and
time 63 days represents the maturation phase (CAP). After 63
days microcosms were dismantled. From each layer, earthworms
were removed manually from the substrate. We sampled two
microcosm substrate layers representing the active (time 21
days) and mature (time 63 days) phases of vermicomposting.
We collected 3 samples from each layer at random and mixed
them gently prior to analysis. Our balanced experimental design
thus included a total of 12 samples distributed across four
groups with three biological replicates per group. Those four
groups corresponded to two treatments, with (EW) and without
earthworms (control; CT), and two times or ages (21 and
63 days).

DNA Extraction and Sequencing
DNA was extracted from 0.25 g of distilled grape marc using the
MO-BIO PowerSoil R© kit (MoBio Laboratories Inc., Carlsbad,
California) according to manufacturer’s protocols. DNA quality

and quantity were determined using BioTek’s Take3TM Multi-
Volume Plate (SinergyTM 2Multi-ModeMicroplate Reader, Bio-
Tek Instruments, Inc.), as previously described in Kolbe et al.
(2019). Aliquots of the same 12 DNA extractions were sequenced
using standard shotgun and amplicon (16S rRNA and ITS) HTS
strategies. Shotgun DNA libraries were prepared using the KAPA
Hyper Prep Kit (Kapa Biosystems, Wilmington, MA), as per the
manufacturer’s instructions. Library quality was validated using
the Agilent 2100 Bioanalyzer system and subjected to two runs
of paired-end sequencing (2×125 bp) on an Illumina HiSeq2500
platform at the University of Southern California genomics core.
All genomic libraries were sequenced twice and reads merged for
downstream analysis.

Amplicons were amplified and sequenced following the
protocols used in the Earth Microbiome Project (Thompson
et al., 2017)—https://earthmicrobiome.org. The bacterial
microbiota (bacteriota) was characterized using the 16S
rRNA V4 region (∼250 bp)—primer 515F (Parada) Fwd:
GTGYCAGCMGCCGCGGTAA and primer 806R (Apprill)
Rev: GGACTACNVGGGTWTCTAAT; while the fungal
microbiota (mycobiota) was characterized using a ∼150
bp region of the ITS gene (ITS1)—primer ITS1F Fwd:
CTTGGTCATTTAGAGGAAGTAA and primer ITS2 Rev:
GCTGCGTTCTTCATCGATGC. PCR and library amplicons
were validated using a Thermo Fisher Qubit 3.0 fluorometer
High-Sensitivity DNA kit and an Agilent Bioanalyzer High-
Sensitivity DNA kit. QC amplicons were sequenced in an
Illumina MiSeq platform (reagent kit v2−500-cycles) at the
Argonne National Laboratory IL using a dual-index sequencing
strategy (Kozich et al., 2013). These platform and protocols are
routinely applied in HTS.

Metataxonomic Analysis
We applied robust and validated bioinformatic pipelines
commonly used in the analysis of amplicon data. DNA amplicons
were processed using the R package dada2 (Callahan et al.,
2016) to infer amplicon sequence variants (ASVs) present in
each sample. ASVs provide a more accurate, consistent, and
reproducible description of amplicon-sequenced communities
than is possible with operational taxonomic units (OTUs) defined
at a constant level (97% or other) of sequence similarity (Callahan
et al., 2016, 2017). 16S rRNA raw reads were filtered using
standard parameters with no uncalled bases, a maximum of 2
expected errors, and truncating reads at a quality score of 2
or less. Taxonomic assignment for 16S rRNA was performed
against the Silva v132 database (Quast et al., 2013) using the
dada2-formatted training files for taxonomy and up to the genus-
level assignment (Callahan et al., 2016). ITS raw reads were first
subjected to adapter trimming by cutadapt (Martin, 2011), which
removed primer sequences due to read-through. Filtering was
performed as described above, with the additional parameter of
minimum read length of 50 bp. Taxonomic assignment for ITS
was performed against the UNITE v18.11.2018 database (Nilsson
et al., 2019b). ASVs were aligned using MAFFT (Katoh and
Standley, 2013) and used to estimate phylogenetic relationships
with FastTree (Price et al., 2010; Piñeiro et al., 2020). The
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resulting data were imported into phyloseq (McMurdie and
Holmes, 2013) for further analysis.

Bacterial metabolic pathways were predicted using 16S
rRNA ASVs in PICRUSt2 (Douglas et al., 2020) following
the standard pipeline. No such analysis is available for ITS
amplicons, which precluded us from comparing metagenomic
and metataxonomic approaches at estimating fungal metabolic
profiles. The alignment software HHMER (Finn et al., 2011) was
used to align reference sequences, which were then placed into a
reference tree using EPA-NG (Barbera et al., 2019) and GAPPA
(Czech et al., 2019). Hidden-state prediction was performed
using castor (Louca and Doebeli, 2018). MetaCyc pathway level
predictions were made with MinPath (Ye and Doak, 2009).

Metagenomic Analysis
Shotgun HiSeq paired-end reads were processed in PRINSEQ-
lite (Schmieder and Edwards, 2011) by trimming reads and
bases with a <25 PHRED score and removing exact duplicates,
reads with undetermined bases, and low complexity reads
(dust filter = 30). After trimming, at least 93% of the
reads remained in all samples. Taxonomic assignment was
performed using PathoScope (Hong et al., 2014). Trimmed
reads were aligned against bacterial and fungal RefSeq genomes
using the PathoScope MAP module, which implements the
bowtie2 read-mapping strategy (Langmead and Salzberg, 2012).
Reads that aligned to the human (hg38) genome, phiX174,
viruses, non-bacterial prokaryotes, non-fungal eukaryotes and
plastid/mitochondrial RefSeq genomes were filtered from the
final datasets. Taxonomic assignment was performed using the
PathoScope ID module (Francis et al., 2013). The resulting
datasets were imported into phyloseq (McMurdie and Holmes,
2013) for downstream analyses. PathoScope is a robust and
validated method of metagenomic profiling of unassembled
sequencing data (Miossec et al., 2017, 2020).

Bacterial metabolic functions were inferred using Humann2
(Franzosa et al., 2018). This is a well-known pipeline for
efficiently and accurately profiling the abundance of microbial
pathways in a community from metagenomic data. Moreover,
because both Humann2 and PICRUSt2 use the Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthology
(KO) accession numbers (Kanehisa et al., 2014), inferred
(Humann2) and predicted (PICRUSt2) functional profiles can be
directly compared. It is important, however, to keep in mind that
these two approaches and databases were originally designed to
characterize human microbiomes and related functions.

Microbial Diversity and Statistical Analysis
We normalized all our samples using the negative binomial
distribution as recommended by McMurdie and Holmes (2013)
and implemented in the Bioconductor package DESeq2 (Love
et al., 2014). This approach simultaneously accounts for library
size differences and biological variability.

We compared taxonomic profiles of phyla, class, family and
genus between shotgun metagenomics and 16S rRNA and ITS
amplicon sequencing. It has been reported that for ∼42% of
bacterial genera there will be pairs of congeneric sequences
that cannot be easily separated because of the high similarity

of their 16S rRNA sequences (Vetrovsky and Baldrian, 2013;
Strube, 2021). Hence, since species and strains are particularly
challenging to identify (or unattainable) for the metataxonomic
methods used here (Vetrovsky and Baldrian, 2013), and are not
commonly reported in vermicomposting (e.g., Gopal et al., 2017;
Dominguez et al., 2019), we did not consider lower-than-genus
taxonomic levels in our analyses.

We compared metagenomic bacterial and fungal abundances
and diversity indices to metataxonomic 16S rRNA bacterial
and ITS fungal abundances, respectively. Taxonomic alpha-
diversity was estimated using Chao1 richness and Shannon,
Simpson and Fisher indices, which account for both richness
and evenness. Beta-diversity was estimated using Bray-Curtis
and Jaccard distances; these two non-phylogenetic indices are
robust to sparse data in count tables, as often is the case for
microbiome data. Taxonomic dissimilarity among samples was
explored using principal coordinates analysis (PCoA), while
functional differences were explored using principal component
analysis (PCA).

We used linear regression to investigate associations between
alpha-diversity indices and treatment (with and without
earthworms) and age (21 and 63 days). We also tested for
variation in phylum abundances across experimental groups; we
chose this taxonomic category because of its larger concordance
between HTS strategies (see Section Results). Significant
differences in beta-diversity across treatments and ages were
determined using the permutational multivariate analysis of
variance (adonis function) implemented in the R package vegan.

The bioinformatic methods and parameters chosen represent
an example of the methodologies and parameter settings
commonly used in 16S rRNA and ITS metataxononic and
metagenomic studies, including those of vermicompost
microbiomes. Our results and insights are then closely connected
to the specific analytical and molecular (see above) workflows
used here. Other amplicon and shotgun protocols or analytical
pipelines may lead to different results. Several methodological
comparisons of shotgun and amplicon target sequencing
approaches and analytical pipelines have been already published
using different NGS platforms including real (natural and mock
samples) and simulated sequences (McIntyre et al., 2017; Sczyrba
et al., 2017; Nasko et al., 2018; Heeger et al., 2019; Ye et al., 2019;
Zielezinski et al., 2019; Marcelino et al., 2020; Miossec et al.,
2020). We refer the reader to previous literature on those topics
for a thorough comparison of metataxononic and metagenomic
HTS strategies.

RESULTS

Targeted amplicon sequencing resulted in 9,444 to 14,516 16S
rRNA paired-end reads and 16,324 to 40,850 ITS paired-end
reads per sample (Supplementary Table 1). After quality control,
the 16S rRNA amplicon sequence datasets ranged from 7,638 to
12,206 16S rRNA sequences per sample, corresponding to 1,204
bacterial ASVs; while the ITS amplicon sequence datasets ranged
from 7,543 to 28,817 ITS sequences per sample, corresponding
to 196 fungal ASVs. For shotgun sequencing, raw paired-end
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FIGURE 1 | Bar plots of the mean relative abundance of the predominant bacteria by phylum, class, family and genus using shotgun reads and 16S ASVs in 12

microcosms (MIC). The white section of the bar plots represents the less abundant taxa aggregated.
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reads ranged from 27,720,512 to 110,656,570 reads per sample,
of which 1,638,115 to 6,147,003 reads per sample mapped
to 943 bacterial genomes, and 13,263 to 170,019 reads per
sample mapped to 33 fungal genomes (Supplementary Table 1).
Rarefaction analyses of bacterial and fungal amplicon and
shotgun data suggested adequate sample sizes (i.e., plateaued
curves) for all the samples (Supplementary Figure 1).

Taxonomic and Functional Diversity of
Bacteriomes
The metagenomic approach detected 10 phyla, 22 classes,
143 families and 412 bacterial genera; while the 16S rRNA
amplicon approach detected 24 phyla, 43 classes, 162 families
and 235 bacterial genera. We excluded Archaea from further
analyses as the proportion of Archaea 16S rRNA reads per
sample varied between 0 and 2%. We compared mean relative
microbial abundances between both HTS sequencing approaches
to establish rankings for each taxonomic category (Figure 1;
Supplementary Tables 2, 3). Both HTS approaches depicted
Proteobacteria as the most abundant phylum followed by
Actinobacteria or Bacteroidetes. The metagenomic approach
put Firmicutes in the 4th ranking, while the metataxonomic
approach put it in the 12th place, albeit with low abundance in
both cases. Additional predominant phyla found by both analyses
were unique to one methodology or varied in their rankings.
Bacteroidia, Gammaproteobacteria, Alphaproteobacteria,
Actinobacteria and Betaproteobacteria were among the four
more abundant classes for at least one of the two HTS methods,
but their rankings varied among them. At the family level,
Xanthomonadaceae, Microbacteriaceae, Comamonadaceae
and Phyllobacteriaceae dominated the metagenomic bacterial
reads, while only Xanthomonadaceae was predominant in the
metataxonomic approach, where the 1st family ranking was
comprised of unclassified ASVs. A similar pattern was observed
at the genus level, where Microbacterium, Mesorhizobium,
Pseudoxanthomonas and Stenotrophomonas dominated the
top-four metagenomic rankings, while only Pseudoxanthomonas
was predominant among the 16S rRNA bacterial genera. As
before, the 1st genus-ranking was composed of unclassified
ASVs, which highlights the higher taxonomic resolution of the
metagenomic approach over the metataxonomic approach.

We used linear regression to statistically compare the mean
relative abundance of the four predominant bacterial phyla across
treatments (with and without earthworms) and age (21 and 63
days) groups (Table 1). Eight out of the 12 linear model tests
were non-significant in both HTS approaches. Proteobacteria
and Actinobacteria varied significantly between treatments in
both HTS approaches, while Proteobacteria varied significantly
for the treatment and age interaction in the metataxonomic
approach, and Bacteroidetes varied significantly between ages for
the metagenomic approach.

Bacterial alpha-diversity of control (CT) and earthworm
(EW) treatment samples was measured after 21 and 63 days
using diversity indices of Chao1, Shannon, Simpson, and
Fisher (Figure 2; Table 2). Diversity estimates ranges overlapped
between metagenomic and metataxonomic data for the Shannon

TABLE 1 | Linear model (LM) analyses of phylum abundances for bacteria and

fungi from metatatoxonomic (16S and ITS) and metagenomic (MG) strategies.

16S MG ITS

Bacteria

Firmicutes

Treatment 0.56 0.24 –

Age 0.93 0.64 –

Treatment*Age 0.51 0.00 –

Proteobacteria

Treatment 13.61** 38.92*** –

Age 0.74 1.33 –

Treatment*Age 10.08* 0.18 –

Actinobacteria

Treatment 8.68* 24.67** –

Age 0.00 0.00 –

Treatment*Age 0.27 0.05 –

Bacteroidetes

Treatment 0.33 3.14 –

Age 0.27 7.80* –

Treatment*Age 2.19 0.24 –

Fungi

Ascomycota

Treatment – 0.76 0.40

Age – 0.98 1.30

Treatment*Age – 1.01 1.38

Basidiomycota

Treatment – 0.95 0.32

Age – 1.01 1.17

Treatment*Age – 0.99 1.06

The significance of LMs was estimated using ANOVA of Treatment III with Satterthwaite

approximation for 1 degree of freedom. For each test, we report the relevant F statistic (F)

and significance [P(>F)] as *p<0.05,** p<0.01, ***p< 0.001. MG, metagenomic analysis.

and Simpson indices, but larger differences were observed for
Chao1 (higher average estimates for shotgun) and Fisher (lower
average estimates for shotgun). Diversity trends, however, varied
across all indices and most groups, with some even showing
opposite trends (e.g., Shannon CT). Overall metagenomic alpha-
diversity decreased over time for both CT and EW groups, while
16S rRNA alpha-diversity did not vary or increased overtime
for the same two groups. Some of these trend differences were
significant in our linear regression analyses (Table 2), but never
for the same groups in both HTS strategies.

Bacterial beta-diversity was estimated across treatments and
ages using the Bray-Curtis and Jaccard distances and PCoA
(Figure 3). Both indices clearly separated control (CT) and
earthworm (EW) groups in both metagenomic and 16S rRNA
sequencing strategies. These differences observed on the PCoA
plots for treatment and age were then confirmed by our adonis
analyses (0.05 < P < 0.0001) in both HTS approaches (Table 2).
Moreover, the 16S rRNA PCoAs also separated well age groups in
the CT samples compared to the shotgun approach, but none of
the beta-diversity analyses of age groups were significant in our
adonis analyses (Table 2).
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FIGURE 2 | Bacterial alpha-diversity estimates (Chao1, Shannon, Simpson, and Fisher indices) for treatment (control, CT; earthworm, EW) and age (21 and 63 days)

groups in shotgun metagenomic and 16S metataxonomic strategies.
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TABLE 2 | Linear model (LM) analyses of alpha-diversity indices and permutational

multivariate analysis of variance of beta-diversity indices from metatatoxonomic

(16S and ITS) and metagenomic (MG) strategies (b, bacteria; f, fungi).

16S MGb ITS MGf

Alpha-diversity

Chao1 267 353 51 11

Treatment 0.15 0.08 21.84** 0.08

Age 0.01 5.24 1.87 1.37

Treatment*Age 0.01 0.05 1.11 0.00

Age CT 0.12 4.56* 2.58 0.74

Age EW 0.02 1.62 0.05 0.63

Shannon 4.8 4.5 2.3 0.7

Treatment 0.07 0.96 26.45*** 0.04

Age 2.35 4.76 2.78 0.88

Treatment*Age 1.83 0.90 −1.55 2.38

Age CT 15.63* 3.06 0.01 7.77*

Age EW 0.01 1.93 1.31 0.11

Simpson 0.98 0.97 0.80 0.32

Treatment 0.29 1.16 30.11*** 0.50

Age 6.16* 1.35 0.41 0.74

Treatment*Age 7.62* 1.08 2.40 3.86

Age CT 24.66** 1.21 1.61 14.70*

Age EW 0.03 2.43 0.83 0.35

Fisher 51.1 32.9 6.7 1.1

Treatment 0.14 0.05 15.58** 0.13

Age 0.12 5.76* 3.13 1.42

Treatment*Age 0.003 0.04 0.96 0.02

Age CT 0.07 4.91* 3.22 0.84

Age EW 0.06 1.81 0.22 0.68

Beta-diversity

Bray-Curtis

Treatment 10.29*** 3.62* 5.30*** 0.25

Age 3.88** 3.39* 4.30** 1.16

Treatment*Age 2.89* 1.33 2.32 0.78

Age CT 4.06 2.79 6.92 0.83

Age EW 2.15 1.12 1.30 0.69

Jaccard

Treatment 5.42*** 2.89** 3.43** 0.47

Age 2.47** 2.33* 2.96** 1.52

Treatment*Age 2.13* 1.33 1.66 0.75

Age CT 2.60 2.09 4.26 0.82

Age EW 1.76 1.17 1.10 0.69

We compared treatment, age and their interaction (treatment*age) and ages within control

(Age CT) and earthworm (Age EW) groups. The significance of LMs was estimated using

ANOVA of Treatment III with Satterthwaite approximation for 1 degree of freedom. For

each test, we report the relevant F statistic (F) and significance [P(>F)] as *p <0.05, **p <

0.01, ***p < 0.001. Mean alpha-diversity estimates across all samples are also indicated

in cursive.

Bacterial functional diversity was inferred and predicted
using shotgun reads in Humann2 and 16S rRNA amplicons
in PICRUSt2, respectively. The 23 and 20 most abundant
KEGG metabolic pathways found by each approach are
depicted in Figure 4. A total of 11 pathways were found
by both approaches. The concordance between functional

profiles was higher than between taxonomic profiles for the
same bacterial samples. Nonetheless, community differences
(beta-diversity) at the functional level in both approaches
were sufficient to separate samples by treatment and
age (Figure 4).

Taxonomic Diversity of Mycobiomes
The metagenomic approach detected 3 phyla, 9 classes, 18
families and 24 fungal genera; while the ITS amplicon approach
detected 4 phyla, 11 classes, 32 families and 48 fungal
genera. As before, we compared the rankings of mean relative
abundances across those taxonomic categories between both
HTS approaches (Figure 5; Supplementary Tables 4, 5). We
observed less variation in rankings between HTS approaches
for fungi than for bacteria, although the metagenomic strategy
clearly showed less taxonomic variation than the metataxonomic
approach. Both HTS methodologies depicted Ascomycota and
Basidiomycota as the first and second most abundant fungal
phyla. Sodariomycetes and Saccharomycetes ranked in the top
two classes, while Tremellomycetes or Microbotryomycetes
occupied the 3rd ranking (excluding the unclassified ITS ASVs).
At the family level, Nectriaceae dominated in both HTS analysis,
although in the ITS approach Dipodascaceae was similarly
abundant and unclassified ASVs ranked 3rd. A similar pattern
was observed at the genus level, where Fusarium occupied the
1st ranking among the classified sequences, but unclassified ASV
showed higher abundance. As in the bacterial analyses, our
ITS results also highlight the higher taxonomic resolution of
the metagenomic approach for classifying fungal reads. Linear
regression analyses of the mean relative abundance of the top
two fungal phyla across treatment and age groups showed non-
significant differences for both HTS approaches (Table 1).

Fungal alpha-diversity estimates (Chao1, Shannon, Simpson,
and Fisher) for treatment (CT and EW) and age (21 and 63 days)
are depicted in Figure 6 and Table 2. Metagenomic data showed
lower diversity estimates than ITS amplicon data for all groups.
As for bacteria, diversity trends between metataxonomic and
metagenomic approaches varied across indices and groups, with
some even showing opposite trends (e.g., Chao1 CT) and with
CT (no earthworms) showing the larger discrepancies. Overall
fungal alpha-diversity increased or decreased over time in the
CT groups, while it varied much less in the EW groups for all
indices and HTS strategies. Moreover, in the metataxonomic
approach, samples including earthworms showed higher levels
of fungal diversity than controls (no earthworms) for all indices,
but this trend was not observed in the metagenomic approach.
Consequently, treatment was also an important (and significant)
factor in all ITS comparisons of diversity, but it was not in
any of the metagenomic comparisons. Age, however, varied
significantly for two of the diversity indices in the metagenomic
CT group (Table 2).

Fungal beta-diversity was estimated using the same indices
(Bray-Curtis and Jaccard distances) and multidimensional
scaling as its bacterial counterpart. Both PCoA plots clearly
separated all samples of ITS ampicons by treatment and age
(Figure 3). Metagenomic samples from both groups, however,
were not well separated in the PCoA plots (Figure 3). These
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FIGURE 3 | Bacterial PCoA plots of beta-diversity estimates (Bray-Curtis and Jaccard indices) for treatment (control, CT; earthworm, EW) and age (21 and 63 days)

groups for shotgun metagenomic and 16S metataxonomic strategies.
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FIGURE 4 | Bacterial functional profiles inferred by Humann2 using shotgun reads and predicted by PICRUSt2 using 16S amplicons in 12 microcosms (MIC). KEGG

pathways found in both analyses are marked with an asterisk. PCA of pathways are also shown for both analyses.

results were confirmed by our adonis analyses, which showed
significant differences in the ITS approach for treatment and age,
but not in the shotgun metagenomic approach (Table 2).

DISCUSSION

We compared two specific HTS approaches at estimating
microbial taxonomy and function in compost (no earthworms)
and vermicompost of white grape marc. We also used these data
and analyses to better understand the dynamics of bacterial and
fungal communities during vermicomposting.

Taxonomic and Functional Diversity in
Metagenomics and Metataxonomics
We sequenced the same 12 samples to compare the results
of shotgun versus targeted amplicon sequencing. Since our
samples represent natural populations, the real composition

of their microbial communities is unknown; therefore, our
experimental design, while allowing us to draw conclusions on
HTS sensitivity, does not allow us to assess the specificity of
each HTS method. This issue, however, goes beyond the scope
of our study and has been already addressed by us and others
using simulated NGS data andmockmicrobiotas (McIntyre et al.,
2017; Sczyrba et al., 2017; Nasko et al., 2018; Heeger et al., 2019;
Ye et al., 2019; Zielezinski et al., 2019; Marcelino et al., 2020;
Miossec et al., 2020).

The 16S rRNA and ITS amplicon approaches have been

the most commonly employed methods to analyze bacteriotas
and mycobiotas, respectively. They have several important
advantages compared to whole metagenome sequencing (WMS):
(1) reduced cost, (2) low computational power and analytical
speed, (3) extensive and curated reference databases (DeSantis
et al., 2006; Quast et al., 2013; Nilsson et al., 2019b), and
(4) well-established bioinformatic analytical pipelines (Schloss
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FIGURE 5 | Bar plots of the mean relative abundance of the predominant fungi by phylum, class, family and genus using shotgun reads and ITS ASVs in 12

microcosms (MIC). The white section of the bar plots represents the less abundant taxa compiled.
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FIGURE 6 | Fungal alpha-diversity estimates (Chao1, Shannon, Simpson, and Fisher indices) for treatment (control, CT; earthworm, EW) and age (21 and 63 days)

groups for shotgun metagenomic and ITS metataxonomic strategies.
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et al., 2009; Callahan et al., 2016; Bolyen et al., 2019). Shotgun
sequencing of microbiotas, however, can provide a picture of
the whole microbiota (and its host) and deeper resolution at
lower taxonomic levels (Jovel et al., 2016). Our analytical results
seem to confirm this last statement for the bacteriotas, since
shotgun HTS identified 1.75 times more bacterial genera than
16S rRNA HTS. For fungal communities, however, ITS HTS
identified two times more fungal genera than shotgun HTS.
Our relatively low sequencing depth of the fungal kingdom
(13–170 thousand reads/sample) and the larger size of their
genomes (typically several orders of magnitude larger compared
to bacterial genomes) may have jeopardized our ability to detect
more fungal taxa in the metagenomic approach. However, a
rarefaction analysis of the fungal shotgun data showed adequate
sample sizes for all the samples (Supplementary Figure 1),
indicating that we are recovering most of the microbial diversity.
Other factors then, may have also contributed to exacerbate this
discrepancy, including misclassification by the ITS approach and
size differences in HTS reference databases. In fact, ITS primer
biases and the uneven lengths of ITS fragments are known to
promote preferential amplification of shorter sequences, leading
to a biased quantification of taxon relative abundance and
of alpha-diversity (Bellemain et al., 2010; De Filippis et al.,
2017). A well-known limitation of the metagenomic approach,
particularly when applied to the study of microbiotas of non-
model systems, is the relatively low availability of fungal genome
references. At the time our analyses were performed, there
were 402 fungal genome references available in the RefSeq
database (O’Leary et al., 2016) and ∼1 million ITS references
in the UNITE database (Nilsson et al., 2019b). The number
of genomes is steadily increasing but is still far from being
sufficiently comprehensive to capture a substantial portion of
the fungal diversity present in most ecosystems (Lewin et al.,
2018). While the use of ITS amplicon data has its own limitations
and methodological issues, it could be expected to yield a more
comprehensive catalog of taxa present in our samples due to the
more established database resource currently available.

Microbial composition and abundance estimated by bothHTS
approaches agreed reasonably well at the phylum level, but larger
discrepancies were observed at lower taxonomic levels (class
to genera). This may be due to the higher resolution of the
metagenomics approach (Hong et al., 2014; Lu and Salzberg,
2020) or potential primer bias issues with the metataxonomic
approach (Klindworth et al., 2013; Eloe-Fadrosh et al., 2016;
Laursen et al., 2017). Nonetheless, at all taxonomic levels themost
abundant microbial taxon in the metagenomic approach was also
the most abundant microbial taxon in the 16S rRNA and ITS
metataxonomic approaches. It has been shown that taxonomic
classification performed with metagenomic and metataxonomic
approaches will be to some extent divergent, as the resolution
of the sequences used for taxonomic assignments is distinct
and variable depending on the genome region captured in
shotgun surveys, the variable region of the targeted amplicon
gene used, and the microbial composition the community under
analysis (Jovel et al., 2016). Previous studies have shown a
good concordance between both approaches for simpler bacterial
communities, but higher discrepancies are expected in more
complex microbiotas like ours.

Alpha diversity metrics summarize the structure of an
ecological community with respect to its richness (number of
taxonomic groups), evenness (distribution of abundances of
the groups), or preferably both. Here we estimated four alpha-
diversity indices for comparison purposes. Only the Chao1
richness index showed higher estimates for the shotgun approach
than for the 16S rRNA amplicon approach, while the other
three indices, which account for richness and evenness, showed
similar or higher diversity for the latter method. Similarly, the
ITS approach showed higher diversity for all indices than the
shotgun approach. Multiple studies have shown that WMS yields
higher levels of within-sample diversity than amplicon methods.
But, a recent thorough comparative analysis of amplicon and
metagenomic sequencing methods using 10 different animal
hosts revealed that measures of alpha diversity can vary
drastically (and significantly) between shotgun and 16S rRNA
HST, with the former sometimes showing similar or lower
richness and Shannon diversity than the latter; the study has also
shown that such patterns seem to be mostly host-specific (Rausch
et al., 2019). Similar comparative studies are still lacking for ITS
vs. WMS, but one could expect comparable results to those seen
for 16S rRNA vs. HTS by Rausch et al. (2019).

Alpha-diversity trends in HTS approaches also varied greatly
between groups for the two compared factors (treatment and
age), with some showing opposite (and sometimes significant)
results. This is obviously of concern because one would
reach different conclusions about the dynamics of microbial
communities depending on the HTS approach used. Since the
true microbial composition of our natural samples is unknown,
we cannot determine what HTS approach better represents
the true microbial dynamics. But as indicated above, since
both approaches may target different layers of the microbial
community, combining results from both metataxonomic and
metagenomic approaches may actually provide a complementary
and more comprehensive view of the microbiota under study.

Indices of microbial structure (beta-diversity) estimated by
the amplicon approaches separated all samples by treatment and
age, while the shotgun approach only segregated the bacteria
and clustered most of the fungal samples. The fungal PCoAs
plots (Figure 3) improved if the two most divergent samples
(MIC2 and MIC17) were excluded, but still no clear pattern was
discerned and the adonis analysis was not significant (data not
shown). We suspect that the relatively low number of available
fungal genome references in the RefSeq database may have
limited our ability to discern patterns of microbial structure in
the fungal shotgun data. Discrepancies in beta-diversity between
metagenomic and 16S rRNA metataxonomic approaches for the
same two distances used here have also been reported in the
comparative study of Rausch et al. (2019), but no other study
has so far applied both approaches to assess fungal structure in
vermicompost microbiotas.

The metabolic potential of the microbiome can be predicted
or cataloged from 16S rRNA and shotgun metagenomics
libraries, respectively. Amplicon approaches like 16S rRNA rely
on the correlation between phylogenetic trees and clusters of
genes shared between taxa (Langille et al., 2013). Shotgun
metagenomics, on the other hand, provides a direct assessment
of the functional attributes of the microbiome (Knight et al.,
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2012). In our analyses, PICRUSt2-imputed functional repertoires
overlapped ∼50% with shotgun profiles. Previous studies have
shown larger discrepancies between both approaches (Jovel et al.,
2016; Rausch et al., 2019), while others have shown a good
concordance (Langille et al., 2013). Variation in imputation
success is largely dependent on the composition of the particular
host community and the 16S rRNA region used, which suggests
that PICRUSt2 profiles should be interpreted with caution
(Rausch et al., 2019). Shotgun metagenomics then offers a more
reliable assessment, although its accuracy depends on sequencing
depth (Knight et al., 2012). Hence, ideally, both HTS approaches
should be complemented with actualmetabolic profiles generated
viametatranscriptomics and confirmed by proteomics (Franzosa
et al., 2015).

Microbial Dynamics During
Vermicomposting of White Grape Marc
Our HTS analyses have revealed differences in composition,
structure, and diversity (taxonomic and functional) over time
in the bacteriotas and mycobiotas of compost microcosms
inoculated with earthworms and controls (no earthworms).
Previous studies of the bacterial microbiome during
vermicomposting of different plant materials such as grape
marc (Gomez Brandon et al., 2019; Kolbe et al., 2019) and
the leguminous shrub Scotch broom (Dominguez et al., 2019)
also showed significant changes in community composition,
structure, and metabolic potential. They also demonstrated that
bacterial communities change quickly and dramatically during
the first weeks of vermicomposting. Those studies, however, did
not include free-earthworm microcosms followed over time, as
we did here; hence they could not untangle the compound effect
of the earthworms from that of the microbes in the successional
changes that take place during decomposition. Our results here
show and confirm that although microorganisms (bacteria and
fungi) are the main agents of biochemical decomposition of dead
organic matter (grape marc), earthworms are also key drivers
in plant vermicomposting, accelerating decomposition and
drastically modifying physical and microbiological properties
of the substrate (Domínguez et al., 2010). Dominguez et al.
(2021) have shown in the vermicomposting of sewage sludge,
that the earthworm gut can eliminate up to 96 and 91% of the
ingested bacterial and fungal taxa, respectively. Gut transit is
also responsible for the drastic microbial changes we observed
here in the first few weeks of grape marc vermicomposting. Both
metagenomic and metataxonomic analyses were able to reveal
those changes, but metagenomics is more informative, has the
potential for a finer degree of resolution and may help us to
unravel worm-microbe interactions.

Our comparative study of the same 12 natural samples
(microcosms) pinpoints similarities and differences between the
specific amplicon and shotgun HTS approaches and analytical
pipelines used for the characterization of bacteriotas and
mycobiotas. Other workflows may lead to different results
and inferences than those presented here. Our study also
provides a complementary and comprehensive view of the
diversity and temporal dynamics of microbial communities
during vermicomposting of white grape marc. We hope our

results highlight the strengths and weaknesses of each approach
and stimulate further microbiome research on vermicomposting.
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