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1. Introduction

The ability to accurately distinguish between strains of infectious pathogens is crucial for
efficient epidemiological and surveillance analysis, studying microbial population struc-
ture and dynamics and, ultimately, developing improved public health control strategies.1

To further such general goals, several molecular typing methods have been proposed that
can identify isolates worldwide (global epidemiology) and/or in localized disease out-
breaks (local epidemiology); see Foley for a review.2 Nonetheless, since 1998, the estab-
lished standard for molecular typing is multilocus sequence typing3 (MLST). MLST was
built on the well-established population genetic concepts and methods of the multilocus
enzyme electrophoresis (MLEE) technique, but provides significant advantages over
this and other typing approaches (see Section 4 for advantages and caveats). MLST exam-
ines nucleotide variation in sequences of internal fragments of usually seven housekeeping
genes: that is, those encoding fundamental metabolic functions (see Section 2 for molec-
ular design and development of MLST). For each gene, the different sequences present
within a species are assigned as distinct alleles and, for each isolate, the alleles at each
of the seven loci define the allelic profile or sequence type (ST). Each isolate is therefore
unambiguously characterized by a series of seven integers, which correspond to the alleles
at the seven housekeeping loci. Most bacterial species have sufficient variation within
housekeeping genes to provide many alleles per locus, allowing billions of distinct allelic
profiles to be distinguished using just seven loci. Alternatively, isolate identification and
tracking can be performed using the nucleotide data directly, although this approach is
more frequently used for population studies (see Section 5 for methods of analyses).

MLST is widely used for molecular typing.4e7 Numerous examples exist of their
use for describing the population structure of pathogens, vaccine studies, tracking
transmission of epidemic strains, and identifying species and virulent strains associ-
ated with disease (see Section 6 for applications). This was made possible by three
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improvements in molecular microbiology4 involving: (1) bacterial evolution and pop-
ulation biology knowledge (discussed later); (2) high-throughput nucleotide
sequencing (see Section 2 for molecular basis); and (3) internet databases
(see Section 3). The bacterial population studies undertaken from the 1980s onward
were central to the development of MLST. Those studies showed that genetic
exchange among bacteria was more common than previously thought, leading to a
reassessment of the role of sexual processes in the structuring of bacterial popula-
tions. Using sequence data, it has been shown that recombination (mosaic genes)
was frequent not only in genes under diversifying selection (e.g., antigen-encoding
and antibiotic-resistant determinant genes), but also in genes under purifying selec-
tion (housekeeping genes). This suggested that the clonal model (variation can
only arise by mutation) was not universal and led to the proposal of new nonclonal
or panmictic (variation is mainly generated by recombination) and partially clonal
models of bacterial population structure. Consequently, typing methods needed to
accommodate a broader spectrum of population structures and be able to distinguish
among them, hence providing not only discriminatory power but also information
about the clonal structure of the organism under study. Therefore, only molecular
techniques that can contrast results across independent markers (such as MLST)
would be adequate for bacterial typing and population genetic inferences.

In the following sections, we describe in more detail all the epigraphs mentioned in
this introduction. We also refer the reader to other reviews on MLST for complemen-
tary information.1,4e6,8e13

2. Molecular Design and Development of Multilocus
Sequence Typing

The principal element in the design of an MLST scheme is the choice of genetic loci.
The selection and number of loci is based on principle, precedent, and practice. Since
MLST was developed as an updated version of MLEE, which indexes variation of
multiple core metabolic or housekeeping genes at the protein level, the selected loci
typically correspond to housekeeping genes encoding proteins for core metabolic func-
tions. Furthermore, housekeeping genes are expected to be somewhat conserved and
vertically transmitted and thus should reveal genetic relationships among strains
without concern for the influence of host or environmental factors. For instance,
such influences might occur when genes encoding hypervariable surface proteins
are subject to immune-driven diversifying selection or genes under antibiotic selection.
The genes should be physically spaced around the genome in order to minimize ge-
netic linkage of loci.

As a matter of principle and practicality, multiple loci of sufficient length need to be
surveyed in order to provide a high level of discrimination. The first MLST scheme
was designed by Maiden and colleagues3 and included six, later expanded to seven,
loci. Most investigators have followed this precedent and developed schemes of seven
loci. The length of nucleotide sequence amplified for each locus is generally in the
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range of 400e600 bp and is determined largely by the parameters of automated
sequencing instruments available at the time the first MLST scheme was developed
in 1998. Most MLST nucleotide sequence data are generated by the Sanger sequencing
method, however, high-throughput technologies such as pyrosequencing,10,14

sequencing-by-synthesis, and single-molecule sequencing5,15 will likely be the
methods of choice in the future for both targeted-amplicon and whole-genome
sequencing. Those technologies are capable of generating accurate read lengths of
w500 bp to 10 kb (PacBio RS II and Sequel systems) and up to 25e50 million
paired-end reads (Illumina MiniSeq/MiSeq platforms) per run. Moreover, the design
of barcoded primers allows simultaneous and efficient sequencing of homologous
products from hundreds of samples in the same run16; see also www.pacb.com and
Chen et al.15

The development of a new MLST scheme from scratch involves four initial steps
(Table 16.1): (1) identification of loci, (2) PCR primer design, (3) survey of a small
number of representative strains, and (4) analysis of nucleotide sequence data to

Table 16.1 Stages in the Design of an MLST Scheme

Actions Criteria

Analyze reference genome to identify 12e18
candidate loci

• Single-copy gene
• Putative core housekeeping gene
Genes evenly spaced in genome

Design nested PCRs using primer select
software

• Outer PCR product about 1000e1500 bp
• Inner PCR product about 400e600 bp

Select 20e25 representative strains • Isolated in different years and different
geographic sites

• No known epidemiological linkage by
transmission or shared phenotypic
characteristics

Perform nested PCRs of the 20e25 strains
and redesign primers as needed

Analyze nucleotide sequence data • Rank loci by level of nucleotide poly-
morphisms and select 7e9 loci with high
level of polymorphism

Select 75e100 strains using the previously
mentioned criteria, type using the 7e9
loci, and perform analysis

• Confirm loci are under purifying
selection

• Assign each unique sequence an allele
number

• Assign each isolate an ST
• The greater the number of STs, the
greater the discriminatory power of the
MLST
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establish neutral evolution of loci and level of strain discrimination. For many bacterial
species, the selection of loci is greatly aided by the availability of annotated whole ge-
nomes, which allows ready identification of housekeeping genes and their physical
location in the genome. An absolute requirement for loci included in an MLST scheme
is that there is only a single copy of the gene in the genome. It is advisable to choose
more than seven loci because not all loci will pass subsequent tests of utility, and typi-
cally 12e18 loci are selected for subsequent tests. As much as possible, the loci should
be evenly spaced across the genome and certainly separated by several tens of thou-
sands of base pairs, although no rules allow a precise estimate of the maximum size
of bacterial genomic fragments that can undergo recombination. The physical location
of loci within genomes may differ among strains, so use of a single reference strain,
which is often all that is available, is at best an approximation. The design of primers
is greatly assisted by the availability of open access and commercial software for
primer design but ultimately depends on trial and error.17,18 Most MLST schemes
use a nested PCR design both to increase sensitivity for samples with a low bacterial
DNA copy number and, more importantly, to provide a high-quantity and high-quality
PCR product for sequencing. The initial evaluation of candidate loci is most easily
accomplished with a small number of strains (20e25), and the strains should not be
epidemiologically linked or share defining characteristics, such as antibiotic resistance,
that might lead to over-sampling of a clonal population. Temporally and geographi-
cally separated strains provide one likely basis for accomplishing this goal. The data
from this small set of strains should allow the stratification of loci on the basis of ef-
ficiency of detection by nested PCR and level of genetic variation. They also provide
the opportunity to optimize primer design.

At least 7e9 loci that could be amplified from all test strains and showed a reason-
ably high level of genetic diversity5,19 should then be evaluated with a larger data set
of 70e100 strains to accomplish the initial data analysis for evolutionary neutrality
and level of strain discrimination. The same rules for selection of strains apply here
as mentioned earlier. A representative collection of strains should be used, but in prac-
tice it is only possible to avoid obvious pitfalls, such as selecting strains from a known
outbreak. The purpose of the initial analysis of MLST data is to confirm that the cho-
sen loci are under purifying selection, to assess the level of polymorphism at each lo-
cus, and to determine whether a sufficient level of discrimination is achieved for
epidemiological studies. The number of unique nucleotide sequences among the
70e100 strains tested establishes the level of polymorphism, and alleles that are
the most polymorphic will provide the greatest degree of discrimination among
strains. While low levels of polymorphism are a reason to reject an allele for inclusion
in an MLST scheme because they will provide little discriminatory power, the seven
most polymorphic alleles are not necessarily the best choice. Ideally, all seven loci
will contribute equally to the discriminatory power of the method and a very high
level of variation may be indicative of diversifying selection pressure. On the other
hand, evolutionary neutrality is a desirable, but not absolutely necessary, character-
istic of loci used in an MLST typing scheme. In fact, most other methods for strain
typing use highly polymorphic loci, which are often known to be subject to selection
pressure. If one or more of the initially selected loci fail the test of neutrality, or no
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combination of 6e7 loci provides sufficient strain discrimination, other loci surveyed
in the test set can be evaluated with the larger data set, and a new 6e7 loci MLST
scheme can be designed. Finding the right balance in terms of efficiency of PCR
amplification, locus neutrality, strain discrimination, and comparability of polymor-
phisms across loci is ultimately a matter of judgment rather than the application of
precise rules.

Once candidate loci have been chosen and the MLST scheme defined, application
of the method in the context of epidemiological studies will establish its reliability in
typing large numbers of diverse strains and its ability to provide sufficient strain
discrimination to address epidemiological questions of interest. For strains that
cannot be typed using the initial PCR primers, it is generally easy to design new
primers. Although the choice of loci used in the MLST scheme could be modified
as more strains are typed (e.g., to increase discrimination), one of the strengths of
MLST as a typing method would be sacrificed; namely, the comparability of data
generated over time and by multiple investigators. Because the sequence type or
ST is defined by the set of distinctly numbered alleles at the seven loci, changing
loci would result in new STs that could not be directly compared to STs defined using
the previous MLST scheme. In that regard, using in silico MLST approaches based
on whole-genome data allows us to compare different typing schemes for the same
group or even integrate genomic inferences with information-rich MLST
databases.20e23

If an epidemiological study requires discrimination of closely related strains, as
may be necessary to examine short-term transmission of antibiotic-resistant isolates,
rather than add to or change the loci in an MLST scheme, a better strategy is to sup-
plement MLST with additional highly polymorphic markers, such as genes encoding
antigens, cell surface proteins, ribosomal genes, or tandem repeats.11,19,24e26

Over the last few years, other typing approaches have been developed based on
similar principles as MLST. Multilocus Variable number of tandem repeats Analysis
(MLVA) uses polymorphic repeated sequences (VNTR) instead of housekeeping
genes. Comparative studies between MLVA and MLST have yielded similar results,
for example, van Cuyck et al.,27 and in recently originated species, the MLVA
approach may have higher discriminatory power.28 Similarly, the Ribosomal Multilo-
cus Sequence Typing method (rMLST) has also been proposed to index the molecular
variation of 53 genes encoding bacterial ribosome protein subunits.11 This method pur-
sues the integration of a taxonomic and typing method in a similar curated MLST
scheme. Although more expensive, the rMLST is likely to provide better resolution
than previous methodologies. Likewise, core-genome (cg) MLST has been developed
to overcome lack of resolution of MLST schemes of certain taxa. By collecting a sam-
ple of genome sequences representing extant diversity, the cgMLST scheme uses
>1000 genes to create sequence types that provide increased resolution for clonal pop-
ulations of bacteria.29 Finally, in order to achieve even greater resolution, other ap-
proaches have been developed based on core/accessory genes or distributed genes
among bacterial species that have the same MLST profile.30,31 This new approach
could skip the laborious and time-consuming steps needed to develop bacteria-
specific MLST schemes.
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3. Multilocus Sequence Typing Databases

One of the goals of the MLST approach was the development of online platforms con-
taining MLST databases to which public health officials and researchers could both
have access and contribute; and from which clinical, epidemiological and population
studies could benefit.3,4,8 The first MLST websites were based on single databases
implemented in the MLSTdB software32; but as MLST schemes began to expand,
several limitations became apparent: redundant information (each record contained
the ST designation and the allelic profile), isolate bias (single databases were domi-
nated by specific studies), and access (all databases were stored at a single location).
To overcome these limitations, a new network-based database software,
MLSTdBNet,33 was developed and implemented on the PubMLST site (http://
pubmlst.org/). This site is served by two databases: (1) a profiles database that contains
the sequences of each MLST allele for each locus linked to an allele number, and (2) an
allelic profiles database with their ST designations. The profile database can then serve
other isolate databases. For each scheme on the PubMLST site there is a PubMLST
isolate database that aims to include at least one isolate for each ST. MLST databases
are hence different from other depository databases, such as GenBank, not only in or-
ganization but also in that they are actively curated for accuracy. It is important to
highlight that MLST databases do not embody the global diversity of an organism
but the extent of its diversity at the time they are accessed. Moreover, stored data is
unstructured and does not necessarily represent natural populations either. As high-
throughput sequencing becomes more affordable, PubMLST is increasingly including
whole-genome sequences, for example, BIGSdb.34

Several other websites are accessible through the PubMLST site. The PubMed
(NCBI) is linked to PubMLST databases, so original publications describing MLST
schemes can be retrieved. The AgdbNetdantigen sequence database software for bac-
terial typing35dis also integrated into the system. Other websites are available for the
storage and access of MLST data. At the time of writing, 93 MLST schemes (82 for
bacteria, 9 for eukaryotes, and 1 each for plasmids and bacteriophage) could be
accessed via the PubMLST site. The PubMLST primary site is also mirrored in four
locations, three in UK and one in Pittsburg (USA). This provides access to MLST
data globally and assures that databases are stored in multiple locations. A detailed
description of the MLST databases, their structure, and most of the published
MLST schemes can be found in Maiden.4

Other websites (www.spatialepidemiology.net/ and beta.mlst.net/Instructions/
mlstmaps.html) have also been developed that incorporate geospatial information in
bacterial epidemiological studies. Those websites provide precise locality data related
to strain distribution and a map-based interface for displaying and analyzing epidemi-
ological information. Moreover, the portal www.eMLSA.net enables species identifi-
cation by means of a taxonomic platform. The integration of genomic and
epidemiological data together with geographic information through MLST databases
will greatly improve our ability to track and prevent infectious pathogens and associ-
ated diseases.
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4. Advantages and Disadvantages of Multilocus
Sequence Typing

As the number of schemes available has increased, MLST has become the most
commonly used method of pathogen typing. In comparison to older methods (serotyp-
ing; MLEE), the use of genetic variation gives MLST the advantage of producing var-
iable data (more resolution) that are universally comparable (within schemes), easily
validated, and readily shared across laboratories. The use of generic sequencing tech-
nology makes MLST a broadly applicable methodology that can be fully automated
and scalable from single isolates to thousands of samples. Because the materials
needed for MLST analysisdDNA or dead cellsdare easily transported among labo-
ratories without the problems associated with infective materials, both the biological
samples and the resulting data are highly portable. Furthermore, the use of online elec-
tronic databases (see Section 3) to store and curate MLST schemes makes them a glob-
ally accessible resource.

MLST targets variation at multiple housekeeping loci. The number of loci that need
to be evaluated to confidently assign an ST has been minimized to reduce the expense
and time required for characterization, with most studies using 6e10 loci. If performed
manually, evaluating even this many loci can be time consuming. However, fully auto-
mated systems, for example, robotics36 provide a high-throughput pipeline for data
collection that can run large volumes of samples with increased reliability. Likewise,
commercial solutions, such as Ion Torrent AmpliSeq panels targeting MLST schemes,
can reduce costs down to cents per marker (www.ampliseq.com). As sequencing tech-
nology progresses, we expect the cost of automation to decrease, so data interpretation,
rather than data generation, will be the likely limiting factor in our understanding of
pathogen population dynamics.

By focusing on sequence variation, MLST provides a highly replicable and repro-
ducible typing method. Additionally, the focus on housekeeping genes provides signif-
icant amounts of genetic data that can be used to calculate pathogen population genetic
parameters (see Section 5) at both local and global scales. Those parameters can be
then used to construct more sophisticated models of pathogen evolution and epidemi-
ology that will improve our understanding of how to control the spread of disease.
However, there is no single set of universal housekeeping genes that can be used
for all pathogens as the recombination rates, substitution rates, and levels of selection
vary across loci and species.13 Therefore, a unique set of loci must be identified for
each novel, untyped pathogen under study. The rapid increase of available microbial
genomes will make data mining for housekeeping genes more feasible, reducing the
time and cost required for constructing new MLST schemes.

Currently, the main drawback of the MLST method is that the selection of house-
keeping loci requires reference genomes.37 Moreover, not all pathogens are suitable
for MLST methods. Some pathogens (e.g., Mycobacterium tuberculosis and Yersinia
pestis) exhibit very little variation throughout their entire genome, most likely repre-
senting “evolutionarily young” pathogens that have not yet accumulated sufficient ge-
netic variation to differentiate strains. For typing these pathogens, more rapidly
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evolving loci (e.g., insertion sequences or antibiotic-resistance determinants) or more
markers (genome-wide SNPs) are needed. Conversely, some bacterial genomes have
accumulated so much variation that MLST housekeeping genes do not provide
adequate information for typing. As we advance MLST schemes in the postgenomic
era, we should be able to combine information-rich and widely adopted schemes
with cost-effective whole-genome sequencing.

5. Analytical Approaches

There are two basic strategies to the analysis of MLST data (Fig. 16.1), one relies on
allele and ST designations to estimate relatedness among isolates (allele-based
methods), and so ignores the number of nucleotide differences between alleles; and
the other relies on nucleotide sequences directly to estimate relatedness and population
parameters (nucleotide-based methods). The allele-based approach has been adopted
from the analysis of MLEE data and so methods based on this strategy were the first
applied to the analysis of MLST data.3,38 The allele-based approach is thought to work
well in nonclonal organisms (e.g., Helicobacter pylori), while nucleotide-based

Figure 16.1 Pipeline showing data and tasks (boxes) and databases and computer programs
(circles) commonly used in the analysis of MLST data.
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approaches are preferable for clonal organisms (e.g., Escherichia coli) since the former
are likely misleading.4 But in practice, most microbes show some degree of clonality
(clonal complex) in their populations; hence, in our opinion, both types of analyses
should be conducted in population and epidemiological studies, for example, Loubna
et al.39 In this section, we present a brief description of some of the most commonly
used approaches for analyzing MLST data. We refer the reader to previous reviews
for a more detailed description.9

5.1 Allele-Based Methods

Since alleles are the unit of analysis, all these methods first require assigning an allele
number to each DNA sequence from each locus. This is done by matching our se-
quences against those stored in public MLST databases (see Section 3). If no match
is found, a new number is assigned in order of discovery. Several computational pro-
grams have been developed for this task, although Sequence Typing Analysis and
Retrieval System (STARS) seems to be very functional and widely popular.9 The
STARS interface was specifically designed for typing and allows the assembly of large
number of sequences at once.

Once alleles have been assigned, data are entered in the MLST websites to acquire
an ST profile. At this point, exploratory analysis (e.g., allele and profile frequencies,
polymorphism estimates, and codon usage) of the data can be performed. The software
package Sequence Type Analysis and Recombinational Tests (START2) can perform
all these tasks.40 Relatedness among STs can be then displayed using methods of clus-
ter reconstruction, such as the Based Upon Related Sequences Types (eBURST)
approach and the simple Unweighted Pair Group Method with Arithmetic Mean
(UPGMA). eBURST41 is based on a simple model of clonal expansion and diversifi-
cation. It first identifies mutually exclusive groups of related STs and attempts to iden-
tify the founding ST of each group. Bootstrap estimates are also calculated to assess
confidence in the groupings. The algorithm then predicts the descent from the pre-
dicted founding ST to the other STs in the group, displaying the output as a radial di-
agram, centered on the predicted founding ST. A globally optimized version
(goeBURST) is also available that identifies alternative patterns of descent using a
graphic matroid approach.42 In 2012, a new approach (PHYLOViZ) was released
for microbial epidemiological and population analysis that allows for the integration
of allelic profiles from MLST or MLVA methods (although Single Nucleotide Poly-
morphism data can also be included) and associated epidemiological data.43 PHYLO-
ViZ uses goeBURST for representing the possible evolutionary relationships between
strains.

The traditional UPGMA method relies on a matrix of distances to estimate isolate
relatedness. Distances are calculated for each pair of STs based on the number of allele
differences, and groups are then sequentially clustered in order of similarity (i.e.,
allelic matches). Additional distance and parsimony methods have been proposed to
estimate relatedness based on allele frequencies, but note that distance methods gener-
ally outperform parsimony methods.44

Multilocus Sequence Typing of Pathogens 391



Allele-based methods have the advantage of simplicity and speed, which are crucial
for efficient epidemiological surveillance and public health management, but disregard
much of the evolutionary information contained at the nucleotide level. A larger and
more sophisticated plethora of nucleotide-based methods exist to estimate isolate rela-
tionships and key population parameters.

5.2 Nucleotide-Based Methods

Any analysis of nucleotide data usually begins with a multiple sequence alignment
(MSA) (i.e., estimation of the homologous nucleotide sites). Since the loci used for
MLST usually evolve very slowly and code for proteins, this step becomes trivial,
particularly at the amino acid level. If needed, several fast and accurate iterative align-
ing strategies are implemented in MAFFT45 and MUSCLE.46

Once an alignment has been generated, we have to determine the model of evolu-
tion that fits the data the best. Model choice is a critical issue and the implemented
model (or lack thereof) will affect all subsequent phylogenetic47 and population ana-
lyses (following two sections). This issue is usually assessed within a phylogenetic
framework, see Posada et al.48 Since mid-1990s substitution models have increased
in complexity, as parameters reflecting new information on nucleotide substitution
processes are added to candidate models.49 Furthermore, model selection can consider
confidence sets of models (model averaging).48 Several criteria have been proposed for
choosing models, such as Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Decision Theory (DT), and Hierarchical Likelihood Ratio Test
(hLRT).50 Although AIC is the most broadly used method for evaluating model fit,
BIC and DT should be preferred.51 These strategies are implemented in the well-
established program jModelTest2.50

5.2.1 Phylogenetic Relatedness

Phylogenetic reconstruction methods can be divided into two types, those that proceed
algorithmically through distances, for example, UPGMA and neighbor joining (NJ)
and those based on optimality criteria. Here, we focus on those that implement
maximum likelihood and Bayesian optimality criteria and allow for the implementa-
tion of multiple data partitions each under its best-fit model. We find this feature partic-
ularly important for analyzing MLST data.

Maximum likelihood (ML) inference attempts to identify the topology that explains
the evolution of a set of aligned sequences under a given substitution model of evolu-
tion with the greatest likelihood.52 RAxML53 implements the ML criterion efficiently
and accurately and can handle large data sets of>1000 sequences with>20 kb.54 Con-
fidence in the estimated relationships (i.e., clade support) is usually assessed using a
nonparametric bootstrap procedure,55 which must be repeated >1000 times to achieve
reasonable precision. RAxML can also rapidly estimate bootstrap proportions.
Another well-established ML framework is PhyML,56 which can internally optimize
diverse evolutionary parameters.

Although similar to ML inference, Bayesian inference (BI) combines the prior
probability of a phylogeny with the likelihood to produce a posterior probability
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distribution of trees, which can be interpreted as the probability of those trees (or tree)
being correct.57 Clade support is estimated by summarizing this distribution of trees
through consensus analysis. Bayesian phylogenies are estimated using Metropolis-
coupled Markov chain Monte Carlo (MCMC) methods and both are implemented in
programs such as MrBayes.58 The output of the BI analysis must be evaluated to assure
the MCMC chains have mixed well and converged; such tasks can be performed in
Tracer.59 Importantly, the best fitting model can vary across sites. For this reason, pro-
grams such as RAxML or MrBayes implement partition-specific (i.e., sites or genomic
regions) models that can improve the accuracy of phylogenetic inferences.60

Often, gene trees differ even when sampled from the same population. This can be
the result of molecular processes (e.g., recombination) or stochastic variation (e.g.,
lineage sorting). Whatever the case, one may want to check if individual gene topol-
ogies are significantly different since ignoring these processes may lead to biased
parameter inferences.61 Multiple ML topological tests have been developed for such
purpose and several are implemented in CONSEL.62

New coalescent approaches have been developed to deal with stochastic variation in
gene trees from multilocus molecular data and to estimate gene trees and species tree.
Among such, BEST63 and *BEAST64 consider the effect of incomplete lineage sorting
(ILS) by implementing the multispecies coalescent model into a Bayesian hierarchical
model. When estimating evolutionary relationships among microbes using DNA se-
quences, the reticulating impact of recombination becomes a significant issue. If
recombination is substantial, the evolutionary history of those sequences no longer
fits a bifurcating model as those described before, and therefore a tree representation
may fail to accurately portray a reasonable genealogy.65 Under such circumstances,
network approaches66 can be used instead. Recently, Woolley et al.67 have revised
the most common algorithms for building phylogenetic networks and concluded
that the union of maximum parsimonious (UMP) trees68 performed the best. TCS69

and SplitsTree70 also performed well at estimating network gene genealogies. Finally,
Didelot and Falush71 have developed a Bayesian coalescent approach (ClonalFrame)
that also takes homologous recombination into account while inferring clonal relation-
ships between the members of a sample.

5.2.2 Population Dynamics

The evolution of DNA sequences in natural populations can be described with param-
eters such as recombination, mutation, growth, and selection rates. Indeed, the accurate
estimation of these parameters is key for understanding the dynamics and evolutionary
history of those populations, their epidemiology, the potential for and mode of evolu-
tion of antibiotic resistance, and ultimately for applying efficient public health control
strategies. Population parameters are more efficiently estimated using explicit statisti-
cal models of evolution, such as the coalescent approach, hence here we describe some
population parameter estimators based on such models.

Recombination is generally defined as the exchange of genetic information between
two nucleotide sequences. It influences biological evolution at many different levels as
well as affects the estimation of other parameters. Comprehensive assessment of sta-
tistical methods for detecting and estimating recombination rates were presented in
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Martin et al.72 and Posada et al.73 These studies concluded that one should not rely on a
single method to detect or estimate recombination. With this idea in mind, software
packages such as RDP474 have been developed to implement a variety of methods
for the same data set. RDP4 is a package that includes 12 recombination estimators
and allows the user to draw conclusions based on the outcome of multiple tests.
Another ML method to detect recombination is GARD,75 which outperformed previ-
ously developed methods. In addition, programs such as LAMARC, LDhat, CodABC,
and OmegaMap76 (described in Pérez-Losada et al.77) can be used to estimate recom-
bination rates and, therefore, to quantify the amount of observed recombination. Simi-
larly, these methods can estimate genetic diversity, the most important population
parameter. Reviews of classical and newer statistical methods for estimating genetic
diversity have been published elsewhere.78e81

Another key parameter for characterizing microbial population dynamics is the
growth rate, which reflects the variation of genetic diversity over time. Growth rates
can be estimated under a certain demographic model (e.g., exponential) or without
dependence on a prespecified model, for example, Skyride.82 The latter approach is
implemented in BEAST,83 which also allows for the analysis of temporally spaced
sequence data. Exponential growth rates and genetic diversity can also be estimated
in LAMARC.

The standard method for estimating selection in protein-coding DNA sequences is
through the nonsynonymous (dN) to synonymous (dS) amino acid substitution ratio dN/
dS (u). u > 1 indicates adaptive or diversifying selection, u < 1 purifying selection,
and u z 1 lack of selection (neutral evolution). u is usually estimated within an ML
phylogenetic framework and assuming an explicit model of codon substitution. Such
models can be very complex, allowing, for example, u to vary across amino acid sites
and/or tree branches, for example, Yang.84 If significant evidence (usually obtained
through likelihood ratio tests, LRT) of adaptive selection is obtained, then Bayesian
tests can be applied to detect amino acid sites under selection, for example, Yang
et al.85 Such methods are implemented and described in more detail in the software
package PAML.84 However, if recombination is suspected in the data, it should be
considered when estimating u to avoid false positively selected sites.61 Thus, one
could estimate recombination and selection rates simultaneously with OmegaMap or
CodABC, or account for the former while estimating the latter, for example,
HYPHY.86

Other key factors in microbial dynamics are time of emergence (e.g., pathogen out-
breaks) and geographic distribution of pathogens. New probabilistic models were
developed within the Bayesian framework87 for inference and hypothesis testing of
divergence times, ancestral locations and historical patterns of migration (i.e., phylo-
geographical history). Such models are implemented in BEAST and SPREAD88 and
visualized using virtual globe software, such as Google Earth; they have already begun
to be applied to the analysis of MLST and/or genome and SNP data.89,90

Most of the nucleotide-based methods described earlier, and others, have been
implemented in user-friendly web servers, such as CBSU (cbsuapps.tc.cornell.edu),
CIPRES (www.phylo.org), Datamonkey (www.datamonkey.org), or PhyML (www.
atgc-montpellier.fr/phyml/).
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6. Applications of Multilocus Sequence Typing

MLST analysis and databases are standardized and broadly used, filled with historical
information, and firmly established in molecular and clinical laboratories worldwide.
Consequently, new typing applications are seeking to integrate existing MLST
schemes with whole-genome shotgun data to characterize microbial populations,
rather than creating from scratch new typing methods. MLST is probably the most
flexible typing method since it can be implemented in small laboratories with standard
equipment (PCR þ Sanger sequencing), as well as in medium-sized facilities with
vanguard infrastructure (targeted-amplicon sequencing; AmpliSeq panels, robotics,
and so on) or laboratories with whole-genome sequencing capability (in silico MLST).

Although primarily developed for the characterization of organisms (typing),
MLST sequence data have also been applied to other endeavors such as molecular
epidemiology (e.g., disease transmission and surveillance programs) and public health
(e.g., monitor and evaluate vaccination programs), as well as to other areas such as
phylogenetics, taxonomy, speciation, population genetics, biosafety, and even to the
inference of human migrations.

6.1 Molecular Epidemiology and Public Health

MLST has gained widespread popularity as a typing method and its use has advanced
understanding of bacterial evolution and has provided insights into the epidemiology
of bacterial diseases. In the context of surveillance and management of disease out-
breaks, being able to quickly type and track infectious diseases is of paramount impor-
tance. Many studies exemplify the use of MLST in these circumstances: emergence of
zoonosis,89,90 detection of disease outbreaks,91,92 estimation of prevalence rates,93,94

and the origins of virulence factors (vertical or horizontally transmitted).95,96

MLST data have been also used to infer population structure and study the emer-
gence and spread of antibiotic resistance.97 For example, MLST has been used to di-
agnose human-associated population structure in the opportunistic pathogen
Ochrobactrum anthropi. Romano et al.98 developed an MLST scheme for this path-
ogen and used the evolutionary information inherent in the DNA sequences to identify
a human-associated subpopulation from their collection of clinical and environmental
isolates. Likewise, MLST has been used to track drug-resistance variants through pa-
tients. Oteo et al.99 collected 162 isolates of Klebsiella pneumoniae from five hospitals
in Spain and used the MLST data to demonstrate the spreading of this bacteria as path-
ogen and colonizer of newborns and adult patients with multilocus resistance acquired
through recombination. Similarly, Lee et al.100 used MLST to identify epidemic and
virulent ciprofloxacin-resistant E. coli clones and their population structure in Korea
causing urinary tract infections.

In a number of studies, MLST data have been used to reveal the epidemiological
history of infectious diseases. For example, MLST has been successful in identifying
clinically important strains of Neisseria meningitides, that is, hyperinvasive line-
ages.101 MLST has been applied to a number of clinically important bacterial popula-
tions, including hospital-acquired strains of Enterococcus faecalis and
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Enterococcus faecium,102,103 and Streptococcus pneumoniae strains associated with
invasive disease.104 In some cases, MLST has failed to distinguish clinically relevant
populations. For example, Staphylococcus aureus isolates from persons with nasal car-
riage, community-acquired pneumonia, and hospital-acquired invasive disease are
evenly distributed among clonal complexes.105 Similarly, there is a poor correlation
between MLST data and tissue tropisms (throat or skin) of Streptococcus pyogenes
isolates.106 For phenotypes that are based on one or a few genes, such as antibiotic
resistance, correlations with MLST data have been large. The evolutionary history
of methicillin-resistant S. aureus (MRSA) has been clarified by MLST data, including
the typing of the methicillin-resistance genetic element, SCCmec.107 Along the same
lines, MLST has been used to identify transmission chains as demonstrated by Choud-
hury et al.108 where the authors identified outbreak sources and characterized out-
breaks of gonorrhea. They typed consecutive gonococcal strains from London STI
clinics over a 9-month period. Clusters of patients with the same strain showed simi-
larities in behavioral and demographic features, suggesting that different strain clusters
represent localized transmission chains.

New phylogenetic coalescent models have been developed allowing researchers to
infer from genetic data more familiar parameters, such as the reproductive number of
viruses,109 as well as to model epidemiological dynamics that describe changes in pop-
ulation size or date of origin.110e113 Lastly, examples of MLST and whole-genome
sequencing integration abound (see Pérez-Losada et al.5). In molecular epidemiology,
studies since 2010 combine MLST data with in silico MLST in an effort to put new
isolates in context without losing the resolution and insight gained by having the
full genetic complement of the bacteria in question.114e117

6.2 Species Diagnosis and Phylogenetics

MLST data have been used to distinguish similar species, to inform the division of a
genus into species, and to ask whether bacterial species exist. The MLST data are espe-
cially useful for species diagnoses as they provide both genealogical information as
well as information on recombination.118 Indeed, even when the MLST are not as
discriminating as other approaches, the phylogenetic information available through
MLST provides novel insights into species and strain relatedness that impact public
health decisions. In a study of Clostridium difficile, for example, Marsh et al.28 found
MLST less discriminatory compared to MLVA or restriction endonuclease analysis
(REA) although concordant, but the combination of MLST with MLVA provided
novel insights into the origins and evolutionary relationships bearing clinical and pub-
lic health importance. Similarly, a phylogenetic analysis of concatenated sequences of
seven MLST loci for Bacillus pseudomallei and Bacillus thailandensis, both soil sap-
rophytes, and Bacillus mallei, the cause of glanders, showed that all B. pseudomallei
strains were tightly clustered and well resolved from all B. thailandensis strains.119

However, B. mallei clustered with B. pseudomallei and, although designated as a “spe-
cies,” can be considered to be a strain (or clone) of B. pseudomallei. Other examples of
bacterial species that are actually clones with distinctive biology and ecology include
Bacillus anthracis120 and Salmonella typhi.121 Neisseria gonorrhoeae strains form a
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tight cluster at the end of a long branch arising from the meningococcal cluster,122 sup-
porting the hypothesis that gonococci arose relatively recently as a strain of human
pharyngeal Neisseria species that acquired the ability to colonize the genital tract
and be transmitted by the sexual route.123 MLST has also proven useful in the context
of taxonomic groups with low genomic representation, for example, neglected diseases
or industrial microbes,124,125 and on studies where large numbers of samples are
analyzed.126,127 For instance, Nu~nez et al. interrogated the genetic structure of the bio-
leaching microbe Acidithiobacillus caldus and found overall low genetic diversity
from different geographic locations, which supports current taxonomic assignments
and suggests that bioprocesses constrain genetic diversity.125

7. Conclusions and Prospects

MLST has become a standard and flexible approach for characterizing bacteria and
some eukaryotes mainly due to the existence of comprehensive databases and its broad
implementation in clinical laboratory settings, from basic research laboratories
(PCR þ Sanger) to core sequencing facilities (cgMLST; in silico MLST). MLST
has expanded its basic scheme to incorporate more and new molecular markers,
such as ribosomal proteins and large matrices of orthologous genes (gene-by-gene
approach), and more recently, to integrate pan and core-genome concepts as well as
draft and full genomes. Two-tier strategies currently being applied to human micro-
biome research where investigations start by using MLST to type as many samples
as possible, and continue by delving further into isolate groups of particular interest
by using whole-genome sequencing are already in practice.117,128

NewMLST-genome strategies will also provide more accurate and robust estimates
of population genetic parameters under more complex and realistic statistical models
such as those based on the coalescent model.129 Moreover, within this framework,
epidemiological data can also be integrated; hence more comprehensive and faster as-
sessments of pathogen dynamics can be achieved. Microbial genomics is expanding
outside research laboratories into clinical practice and molecular diagnostics.130,131

One can only assume that classical or expanded forms of MLST will remain a key
component of the microbial genomicist’s toolkit toward understanding the ecology
and evolution of infectious diseases.
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